支撑点竖直振动倒立摆

        如下图所示,摆杆通过铰链与竖直导轨上滑块连接。有这样一种现象,当滑块在竖直轴上以小幅度高频移动时,摆杆的偏离角度θ可以等幅振动或收敛。

建立模型:

滑块运动方程

 

摆杆质心位置

 

 \tiny y_c=l\cos\theta+h

其中 l 是摆杆质心到支撑点的距离

摆杆的势能

 

摆杆动能

 

拉格朗日力学求动力学方程

 

 \small \frac{\mathrm{d} }{\mathrm{d} t}\! \! \left ( \frac{\partial L}{\partial \dot{\theta}} \right )-\frac{\partial L}{\partial \theta}=k \frac{\theta}{ \left |\theta \right |}

 其中k是摆杆与滑块铰链的摩擦系数,k为零时摆杆只能以等幅摆动的方式倒立。F_y是支撑点对杆支持力的竖直分量。得到动力学方程

 \small \left ( J+ml^2 \right )\ddot{\theta}-mgl\sin\theta-ml\ddot{h}\sin\theta=k\frac{\theta}{\left| \theta \right|}

Simuolink仿真:

将第一个方程用Simulink搭建仿真系统,设置摆杆的偏离竖直位置的初始角度是30度,滑块的振动幅值为0.1m,频率为134rad/s.

 得到结果

 本文只记录了对这个仿真系统的简单测试,没有进行深入研究总结一般规律。得到了一点定性经验,当支撑点(滑块)振动的幅值越小时,振动频率应越大才能使摆杆倒立收敛。至于其临界频率与振幅大小和摆杆的初始角度的关系需要更深入的研究。有质动力(Ponderomotive Force)是什么?它的定义是? - 知乎这篇文章推导了这种关系,但作者的推导是在摆杆偏离角很小的条件下作的。我上述仿真是使用的较大的偏离角,滑块振动频率按照作者的推导结果(振动频率是摆杆自由摆动时的固有频率的\small \sqrt{2}倍)逐步上调至其将近十倍才使得摆杆收敛至竖直位置。也就是说摆杆偏离角较大时,支撑点的临界频率会更高。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值