n阶Newton-Cotes公式及其代数精确度

零阶Newton-Cotes公式(矩形法)

∫ a b f ( x )   d x ≈ ( b − a ) f ( a + b 2 ) \int_a^b f(x) \, dx \approx (b - a) f\left(\frac{a + b}{2}\right) abf(x)dx(ba)f(2a+b)

一阶Newton-Cotes公式(梯形法)

∫ a b f ( x )   d x ≈ b − a 2 [ f ( a ) + f ( b ) ] \int_a^b f(x) \, dx \approx \frac{b - a}{2} [f(a) + f(b)] abf(x)dx2ba[f(a)+f(b)]

二阶Newton-Cotes公式(Simpson公式)

∫ a b f ( x )   d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_a^b f(x) \, dx \approx \frac{b - a}{6} [f(a) + 4f\left(\frac{a + b}{2}\right) + f(b)] abf(x)dx6ba[f(a)+4f(2a+b)+f(b)]

三阶Newton-Cotes公式(Simpson 3/8公式)

∫ a b f ( x )   d x ≈ 3 h 8 [ f ( a ) + 3 f ( a + h ) + 3 f ( a + 2 h ) + f ( b ) ] \int_a^b f(x) \, dx \approx \frac{3h}{8} [f(a) + 3f(a + h) + 3f(a + 2h) + f(b)] abf(x)dx83h[f(a)+3f(a+h)+3f(a+2h)+f(b)]
其中 h = b − a 3 h = \frac{b - a}{3} h=3ba

四阶Newton-Cotes公式(Boole’s Rule)

∫ a b f ( x )   d x ≈ 2 h 45 [ 7 f ( a ) + 32 f ( a + h ) + 12 f ( a + 2 h ) + 32 f ( a + 3 h ) + 7 f ( b ) ] \int_a^b f(x) \, dx \approx \frac{2h}{45} [7f(a) + 32f(a + h) + 12f(a + 2h) + 32f(a + 3h) + 7f(b)] abf(x)dx452h[7f(a)+32f(a+h)+12f(a+2h)+32f(a+3h)+7f(b)]
其中 h = b − a 4 h = \frac{b - a}{4} h=4ba

一般的 ( n ) 阶Newton-Cotes公式

对于一般的 ( n ),其公式可以表示为:

∫ a b f ( x )   d x ≈ h ∑ i = 0 n w i f ( x i ) \int_a^b f(x) \, dx \approx h \sum_{i=0}^n w_i f(x_i) abf(x)dxhi=0nwif(xi)

这里,权重 ( w_i ) 需要通过对拉格朗日插值多项式进行积分得到。通常,可以通过公式或查阅表格获取这些权重。以下是一些常见的Newton-Cotes权重:

( n )插值点数 ( n+1 )权重 ( w_i )
011
12 1 2 , 1 2 \frac{1}{2}, \frac{1}{2} 21,21
23 1 6 , 2 3 , 1 6 \frac{1}{6}, \frac{2}{3}, \frac{1}{6} 61,32,61
34 1 8 , 3 8 , 3 8 , 1 8 \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8} 81,83,83,81
45 7 90 , 32 90 , 12 90 , 32 90 , 7 90 \frac{7}{90}, \frac{32}{90}, \frac{12}{90}, \frac{32}{90}, \frac{7}{90} 907,9032,9012,9032,907

权重计算方法

对于更高阶的Newton-Cotes公式,计算权重 ( w_i ) 的方法通常如下:

  1. 使用拉格朗日多项式进行插值。
  2. 对插值多项式积分,得到积分值。
  3. 将积分值分解为权重的形式。

例如,拉格朗日插值多项式的一般形式为:

P n ( x ) = ∑ i = 0 n f ( x i ) ℓ i ( x ) P_n(x) = \sum_{i=0}^n f(x_i) \ell_i(x) Pn(x)=i=0nf(xi)i(x)

其中, ℓ i ( x ) \ell_i(x) i(x) 是拉格朗日基函数:

ℓ i ( x ) = ∏ 0 ≤ j ≤ n j ≠ i x − x j x i − x j \ell_i(x) = \prod_{\substack{0 \leq j \leq n \\ j \neq i}} \frac{x - x_j}{x_i - x_j} i(x)=0jnj=ixixjxxj

对插值多项式 P n ( x ) P_n(x) Pn(x) [ a , b ] [a, b] [a,b] 上进行积分:

∫ a b P n ( x )   d x = ∑ i = 0 n f ( x i ) ∫ a b ℓ i ( x )   d x \int_a^b P_n(x) \, dx = \sum_{i=0}^n f(x_i) \int_a^b \ell_i(x) \, dx abPn(x)dx=i=0nf(xi)abi(x)dx

从而得到权重 ( w_i ) 为:

w i = ∫ a b ℓ i ( x )   d x w_i = \int_a^b \ell_i(x) \, dx wi=abi(x)dx

这些积分可以通过符号计算或数值方法进行求解。





为了证明一般的 ( n ) 阶Newton-Cotes公式具有 ( n ) 次代数精确度,我们需要证明这种公式能够精确地积分所有 ( n ) 次及以下的多项式。

一般的 ( n ) 阶Newton-Cotes公式

一般的 ( n ) 阶Newton-Cotes公式的形式为:

∫ a b f ( x )   d x ≈ h ∑ i = 0 n w i f ( x i ) \int_a^b f(x) \, dx \approx h \sum_{i=0}^n w_i f(x_i) abf(x)dxhi=0nwif(xi)

其中 ( h = \frac{b - a}{n} ) 且 ( x_i = a + i h )(等距节点)。

证明 ( n ) 次代数精确度

要证明这一公式对所有 ( n ) 次及以下的多项式是精确的,即我们要证明对于任何多项式 ( p(x) )(其中 (\deg§ \leq n)),公式是精确的:

∫ a b p ( x )   d x = h ∑ i = 0 n w i p ( x i ) \int_a^b p(x) \, dx = h \sum_{i=0}^n w_i p(x_i) abp(x)dx=hi=0nwip(xi)

我们将对任意 ( k ) 次多项式 ( p(x) = x^k ) (( k \leq n ))来进行验证。

步骤1:计算积分

首先计算 ( p(x) = x^k ) 在区间 ([a, b]) 上的积分:

∫ a b x k   d x = b k + 1 − a k + 1 k + 1 \int_a^b x^k \, dx = \frac{b^{k+1} - a^{k+1}}{k+1} abxkdx=k+1bk+1ak+1

步骤2:离散求和

然后,计算 Newton-Cotes 公式的离散求和部分:

h ∑ i = 0 n w i x i k h \sum_{i=0}^n w_i x_i^k hi=0nwixik

在这种情况下,( x_i = a + ih ),并且 ( h = \frac{b - a}{n} ),因此 ( x_i ) 可以表示为:

x i = a + i b − a n x_i = a + i \frac{b - a}{n} xi=a+inba

因此,求和部分变为:

h ∑ i = 0 n w i ( a + i b − a n ) k h \sum_{i=0}^n w_i \left(a + i \frac{b - a}{n}\right)^k hi=0nwi(a+inba)k

步骤3:拉格朗日插值多项式

Newton-Cotes公式是基于对被积函数进行多项式插值而得来的。我们需要证明对于 ( x^k ) 多项式,插值多项式在每一个节点 ( x_i ) 上的值都正确。

考虑拉格朗日插值多项式 ( L(x) ),它是唯一的经过 ( n+1 ) 个节点 ( (x_i, f(x_i)) ) 的 ( n ) 次多项式。对于 ( x^k ),插值多项式 ( L(x) ) 实际上就是 ( x^k ) 自身,因为 ( x^k ) 本身已经是一个 ( n ) 次多项式。

步骤4:权重的构造

权重 ( w_i ) 是通过对拉格朗日基函数 ( \ell_i(x) ) 在区间 ([a, b]) 上积分得到的,即:

w i = ∫ a b ℓ i ( x )   d x w_i = \int_a^b \ell_i(x) \, dx wi=abi(x)dx

将这些权重应用到 Newton-Cotes 公式中,我们得到:

h ∑ i = 0 n w i ℓ i ( x ) = ∫ a b x k   d x h \sum_{i=0}^n w_i \ell_i(x) = \int_a^b x^k \, dx hi=0nwii(x)=abxkdx

这里 (\ell_i(x)) 是拉格朗日基函数,满足在插值点处的插值条件。因为 (\ell_i(x)) 构成的插值多项式能够精确表示 ( x^k )(对于 ( k \leq n )),所以 Newton-Cotes 公式对 ( x^k ) 是精确的。

结论

通过以上步骤,我们证明了一般的 ( n ) 阶 Newton-Cotes 公式对 ( n ) 次及以下的多项式是精确的,即具有 ( n ) 次代数精确度。

  • 16
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值