一、背景
对于深度学习相关的轴承故障分析,以前的研究要么使用原始的一维时间序列直接作为网络模型的输入,要么使用通过一维信号转换获得的二维波形信号作为网络模型的输入。基于原始数据的深度学习需要消耗大量的计算资源,此外大量的无用数据会大大降低模型的训练精度,因此本文希望将数据驱动的故障诊断转化为特征驱动的故障诊断,基于关键信息进行诊断大大加快了计算效率。
现有的卷积以一维和二维为主,一维时间序列信号进行分析口与较好的提取波形的时间序列特征,但是无法识别其内部的空间领域;二维波形信号的分析可以保留信号的空间领域特征,但是容易丢失时域特征。
二、模型
2.1融合卷积神经网络(FCNN)

融合卷积神经网络(FCNN)相比于单一的一维卷积和二维卷积的优势在于保证时序特征提取的同时可以基于图像处理手段找到“故障图”中的关键信息,并将二者进行融合挖掘深层次的故障特征信息驱动后续的故障识别算法。
基于FCNN的自编码器,编码部分包括以为信息编码和二维信息编码,在特征识别的最后将一维特征和二维特征数据进行拼接,并且通过全连接的方式进行特征融合。个网络层之间使用RELU函数进行激活,可增加模型的曲线拟合能力,但是该模型没有使用池化层,因为池化层会降低诊断的准确性。
FCNN特征提取结构表:

为实现自编码的训练过程,选择使用SmoothL1Loss损失函数。SmoothL1Loss同时具有L1Loss的优点和L2Loss的优点,当预测值和groundtruth差别较小的时候,其实是使用L2Loss,损失函数相较于L1Loss比较圆滑;而当差别大

本文提出一种融合卷积神经网络(FCNN)与支持向量机(SVM)的轴承故障诊断方法。FCNN结合一维与二维卷积优势,有效提取时序及空间特征;SVM通过优化参数提升分类效果。实验采用改进的麻雀搜索算法确定最佳超参数。
最低0.47元/天 解锁文章
1866

被折叠的 条评论
为什么被折叠?



