基于冲击特征提取的旋转机械智能故障诊断(学习记录)

该博客介绍了冲击特征提取胶囊网络模型(IF-CAPS),利用Laplace小波卷积层增强对齿轮、轴承故障特征的可解释性提取。模型包括小波卷积层、扩展卷积层和胶囊层,实现端到端的故障诊断。小波卷积层通过更新尺度参数s和平移参数u来适应信号特征,扩展卷积层则强化提取的特征信息。整个模型旨在提高深度学习在故障诊断中的特征解释能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、摘要

在胶囊网络的架构基础上,将原始故障振动信号作为输入,通过构造首层小波核卷积层,针对性提取冲击故障特征,提高深度学习网络特征提取的可解释性;在小波核卷积层之后扩展一层卷积层,强化首层小波核卷积层提取的特征,将特征经初级胶囊层、数字胶囊层输出分类结果,从而构造了端对端的小波卷积胶囊网络模型。

二、冲击特征提取胶囊网络模型(IF-CAPS)

 2.1Laplace小波卷积层

标准卷积层采用随机初始化卷积核与输入信号的高度和宽度进行卷积,其表达式为

为了增强网络模型对齿轮、轴承故障特征提取的可解释性,将小波与卷积网络相结合,针对性提取故障振动信号中的冲击特性。 小波是一种著名的信号处理方法,一般的小波基函数表达式如下:

Laplace小波的波形是一种单边指数衰减的复指数小波,它具有和故障振动信号冲击响应一样的单边衰减特性,对振动信号冲击特征敏感。

小波卷积核层由不同尺度参数和平移参数的小波核组成,它用预定义的基函数\psi _{u,s}(t)执行卷积操作,并且只依赖于两个可学习的参数s和u,其计算表达式为:

 在小波卷积层前向传播过程中,只需要更新尺度参数s和平移参数u,更新过程为:

2.2扩展卷积层

在首层小波核卷积后进行卷积层扩展,可以进一步强化小波卷积层提取的特征信息,使特征信息变得进一步全局化,扩展卷积层表达式为:

2.3IF-CAPS模型诊断流程

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值