泛函

泛函(functional)

泛函(functional)指以函数构成的向量空间为定义域,实数为值域为的“函数”,即某一个依赖于其它一个或者几个函数确定其值的量,往往被称为“函数的函数”。
在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。泛函的应用可以追溯到变分法,其中通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。

S S S 是由一些函数构成的集合。所谓 S S S上的泛函就是 S S S 上的一个实值函数。 S S S 称为该泛函的容许函数集。

例子:
设在 xOy 平面上有一簇曲线 y ( x ) y(x) y(x), 其长度为 L = ∫ C d s = ∫ x 0 x 1 1 + y ′ 2 d x L=\int _{C}ds = {\int _{x_0}^{x_1} {\sqrt {1+{y'}^{2}}}dx} L=Cds=x0x11+y2 dx
显然, y ( x ) y(x) y(x)不同, L L L也不同,即 L L L的数值依赖于整个函数 y ( x ) y(x) y(x)而改变。 L L L和函数 y ( x ) y(x) y(x) 之间的这种依赖关系就称为泛函关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值