RepVGG学习笔记

RepVGG是一种新的卷积神经网络架构,其核心思想是通过结构重参数化在训练时保持高性能,而在推理时实现简洁高效的模型。该方法挑战了现有的复杂网络设计,提出了一种简化版的VGG样模型,能够在不牺牲性能的情况下降低计算复杂度。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值