概率论——7 常见概率分布及其分布率

0-1分布

定义

设随机变量 X X X只可能取0和1两个值,它的分布律是
P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 ( 0 < p < 1 ) P\left\{X=k\right\}=p^k(1-p)^{1-k},k=0,1(0<p<1) P{X=k}=pk(1p)1k,k=0,1(0<p<1)
则称 X X X服从参数为 p p p的(0-1分布)或两点分布。

表格形式如下:

image-20240419160125712

应用
  1. 在事件仅有两个样本点时可以用0-1分布来刻画。

  2. 在有多个样本点时,可以构造某事件发生而其他事件不发生或者某个事件不发生其他事件发生,来构造出0-1分布进行简化。如:

    image-20240419160348175

二项分布

伯努利试验

设试验 E E E只有两个可能结果: A A A A ˉ \bar A Aˉ,则称 E E E为伯努利试验。设 P ( A ) = p ( 0 < p < 1 ) P(A)=p(0<p<1) P(A)=p(0<p<1)

E E E独立重复地进行 n n n次,则称这一串重复的独立试验 n n n​重伯努利试验

注:”重复“是指在每次试验中 P ( A ) = p P(A)=p P(A)=p保持不变;“独立”是指各次试验的结果互不影响

定义

X X X的分布律为:

P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . , n P\{X=k\}=C_n^kp^k(1-p)^{n-k},k=0,1,2,...,n P{X=k}=Cnkpk(1p)nk,k=0,1,2,...,n

则称 X X X服从参数为 n , p n,p n,p的二项分布,记为 X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)

n = 1 n=1 n=1时,二项分布就是0-1分布

二项分布的概率规律

k k k增加时, P { X = k } P\{X=k\} P{X=k}先单调增加,达到最大值后,随后单调减少:

image-20240509185034707

例子
  • 抽检产品质量
  • 射击试验

泊松分布

当二项分布中的 n → ∞ n\to \infty n时, X X X应该服从什么样的分布?

定义

若随机变量 X X X的分布律为:

P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , . . . P\{X=k\}=\frac {λ^ke^{-λ}} {k!},k=0,1,2,... P{X=k}=k!λkeλ,k=0,1,2,...

其中 λ > 0 λ>0 λ>0是常数,则称随机变量 X X X服从参数为 λ λ λ的泊松分布,记为 X ∼ P ( λ ) X\sim P(λ) XP(λ)

实际上在高等数学的级数中有这样的结论:

∑ n = 0 ∞ x n n ! = e x \sum_{n=0}^\infty \frac {x^n} {n!}=e^x n=0n!xn=ex

所以易证明:

∑ k = 0 ∞ λ k e − λ k ! = 1 \sum_{k=0}^\infty \frac {λ^ke^{-λ}} {k!}=1 k=0k!λkeλ=1

泊松定理

image-20240509191846465

泊松定理有以下两个应用:

  1. 泊松定理说明了当 n → ∞ n\to\infty n时,二项分布的极限就是泊松分布
  2. n n n很大( n ≥ 20 n \ge 20 n20), p p p很小( p ≤ 0.05 p\le 0.05 p0.05)时,有二项分布近似公式:

P { X = k } = C n k p k ( 1 − p ) n − k ≈ λ k e − λ k ! , λ = n p P\{X=k\}=C_n^kp^k(1-p)^{n-k}\approx\frac {λ^ke^{-λ}} {k!},λ=np P{X=k}=Cnkpk(1p)nkk!λkeλ,λ=np

几何分布

定义

在独立重复试验中,试验次数预先不能确定。设每次试验成功的概率为 p p p,将实验进行到成功一次为止,以 X X X表示所需的试验次数,则 X X X的分布律为:
P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , . . . P\{X=k\}=(1-p)^{k-1}p,k=1,2,... P{X=k}=(1p)k1p,k=1,2,...
则称随机变量 X X X服从参数为 p p p的几何分布。

几何分布的分布律应该是一个公比为 k k k等比数列

超几何分布

定义

image-20240513195037852

  • 27
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
概率论中,先验概率是指根据以往经验和分析得到的概率,在"由因求果"问题中作为因出现。先验概率可以通过全概率公式等方法计算得到。而后验概率是指在已有结果的情况下,求引起这个结果的因素的可能性,即由果求因。后验概率可以通过贝叶斯定理计算得到。 关于保研复习资料,根据引用提供的资料,它是一份自己整理的保研概率论面试保研资料。这份资料可能包括了保研概率论的相关知识、面试常见问题和答案等内容。如果你对概率论的保研复习感兴趣,这份资料可能会对你有所帮助。但请注意,复习资料只是辅助工具,最重要的还是理解概率论的基本概念和原理,并进行大量的练习和实践。希望你能够努力学习,加油!<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [概率论保研复习.pdf](https://download.csdn.net/download/Mikesuper_blog/12722360)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [计算机保研复习](https://blog.csdn.net/dlz_yhn/article/details/126806194)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [计算机保研专业课必备之数学](https://blog.csdn.net/qq_54117842/article/details/127927858)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值