归并排序
(1)思想:就是分而治之
1:通俗的来说就是,在分的过程中进行比较,然后合并起来就会变成有序
2:归并排序的特点:归并排序的时间复杂度是很低的:因为他的复杂度只是数量减一即可。但是归并排序需要额外的空间开销
3:总的思路就是,将每一份数列都分成左右两边直至分到最后还剩一个,然后在分的递归的归的过程中进行比较即可
(2)代码如下所示:
package com.dataStrcture;
import java.util.Arrays;
//归并排序:用的思想是分而治之
/*1·归并排序的时间复杂度是很低的:因为他的复杂度只是数量减一即可
* 2·归并排序需要额外的空间开销*/
public class MergeSort {
public static void main(String[] args) {
int[]arr={8,4,5,7,1,3,6,2};
System.out.println("排序之前的数组:"+Arrays.toString(arr));
int[]temp=new int[arr.length];
mergeSort(arr,0,arr.length-1,temp);
System.out.println("排序之后的数组:"+Arrays.toString(arr));
}
//分+合并
public static void mergeSort(int[] arr,int left,int right,int[]temp){
if(left<right){
int mid=(left+right)/2;
mergeSort(arr,left,mid,temp);
mergeSort(arr,mid+1,right,temp);//到此为止只是将一组数据进行了分解,该位置的时候已经只有一个数据的时候了
merge(arr,left,mid,right,temp);
}
}
//合并的方法(也就是将其分排序的方法)
/*
* arr排序的数组
* left左边有序序列的初始索引
* mid中间索引
* right右边索引
* temp中转数组
* */
public static void merge(int[] arr,int left,int mid,int right,int[] temp){
int i=left;//初始化i,左边有序数组的初始索引
int j=mid+1;//初始化j,右边有序数组的初始索引
int t=0;//开销数组的初始索引
//(1)先把左右两边(有序)的数据拷贝到temp数组中,直到又一边的数组已经拷贝完成
while(i<=mid&&j<=right){
if(arr[i]<=arr[j]){//当左边的数小于右边的数,就把左边的数拷贝进temp数组
temp[t]=arr[i];
t++;
i++;
}else{
temp[t]=arr[j];
t++;
j++;
}
}
//(2)当上面的循环跳出后,就是还有一边的数组还没有走完,进行将剩余的数全部拷贝进temp数组中
while(i<=mid){//说明左边的没有走完
temp[t]=arr[i];
t++;
i++;
}
while(j<=right){//说明左边的没有走完
temp[t]=arr[j];
t++;
j++;
}
//(3)将temp的数组中的数拷贝或arr数组,这时候的temp的下标已经不为0了,所以要重新将t值赋值为0
t=0;
int tempLeft=left;//为了不让left一定,创建一个变量,让其移动即可
while(tempLeft<=right){//不一定将temp数组全部拷贝到arr数组中
arr[tempLeft]=temp[t];
tempLeft++;
t++;
}
}
}
(3)实现结果如下所示: