

归并顺序:赤橙黄绿青蓝紫

图的存储结构:
typedef truct Road{int a,b;int w;}Road;
Road road[maxSize];
并查集的(生成树的)存储结构:
int parent[maxSize];/*简化了树的data的树的双亲表示法*/
int getRoot(int p)
{
while(p!=parent[p]){p=parent[p];}/*只有根节点标号==的父节点的标号*/
return p;
}
总体代码:
代码还是相对比较简洁的
void Kruskal (Road road[] ,int n,int e,int &sum)/*e是边的个数*/
{
int a, b;
sum = 0;
for(inti=0;i<n;++i) v[i] = i;/*数据的初始化*/
sort (road, e) ;/*将存储边的数组按照权值从小到大排序*/
for(int i=0;i<e;++i)
{
a = getRoot (road[i].a) ;
b = getRoot (road[i].b) ;
if(a != b)
{ parent[a] = b;
sum+= road[i].W;
}
}
}
这篇博客介绍了如何运用Kruskal算法求解图的最小生成树问题。通过定义图的存储结构和并查集的数据结构,博主详细解释了算法流程。代码中展示了如何初始化数据,对边进行排序,并利用并查集判断是否构成环,从而选择合适的边加入到最小生成树中。
1390

被折叠的 条评论
为什么被折叠?



