已知
m
m
m个向量
α
1
,
α
2
,
…
,
α
m
\alpha_1,\alpha_2,\dots,\alpha_m
α1,α2,…,αm线性相关,但其中任意
m
−
1
m-1
m−1个都线性无关,证明:
(
1
)
(1)
(1)如果等式
k
1
α
1
+
k
2
α
2
+
⋯
+
k
m
α
=
0
k_1\alpha_1+k_2\alpha_2+\dots+k_m\alpha=0
k1α1+k2α2+⋯+kmα=0,则这些
k
1
,
k
2
,
…
,
k
m
k_1,k_2,\dots,k_m
k1,k2,…,km或者全为
0
,
0,
0,或者全不为
0.
0.
0.
(
2
)
(2)
(2)如果存在两个等式
k
1
α
1
+
k
2
α
2
+
⋯
+
k
m
α
m
=
0
,
l
1
α
1
+
l
2
α
2
+
⋯
+
l
m
α
m
=
0
,
k_1\alpha_1+k_2\alpha_2+\dots+k_m\alpha_m=0,l_1\alpha_1+l_2\alpha_2+\dots+l_m\alpha_m=0,
k1α1+k2α2+⋯+kmαm=0,l1α1+l2α2+⋯+lmαm=0,其中
l
1
≠
0
,
l_1\ne 0,
l1=0,则
k
1
l
1
=
k
2
l
2
=
⋯
=
k
m
l
m
.
\frac{k_1}{l_1}=\frac{k_2}{l_2}=\dots=\frac{k_m}{l_m}.
l1k1=l2k2=⋯=lmkm.
证:
(
1
)
(1)
(1)如果
k
1
=
k
2
=
⋯
=
k
m
=
0
,
k_1=k_2=\dots=k_m=0,
k1=k2=⋯=km=0,则证毕.否则总有一个
k
≠
0
,
k\ne 0,
k=0,不妨设
k
1
≠
0
,
k_1\ne 0,
k1=0,那么其余的
k
i
k_i
ki都不能等于
0
,
0,
0,否则若某个
k
i
=
0
,
k_i=0,
ki=0,则有
∑
j
≠
i
k
j
α
j
=
0
\sum_{j\ne i}k_j\alpha_j=0
∑j=ikjαj=0,其中
k
1
≠
0.
k_1\ne 0.
k1=0.这与任意
m
−
1
m-1
m−1个都线性无关的假设矛盾,从而
k
1
,
k
2
,
…
,
k
m
k_1,k_2,\dots,k_m
k1,k2,…,km全不为
0.
0.
0.
(
2
)
(2)
(2)由于
l
1
≠
0
,
l_1\ne 0,
l1=0,由
(
1
)
(1)
(1)知
l
1
,
l
2
,
…
,
l
m
l_1,l_2,\dots,l_m
l1,l2,…,lm全不为
0
,
0,
0,如果
k
1
=
k
2
=
⋯
=
k
m
=
0
,
k_1=k_2=\dots=k_m=0,
k1=k2=⋯=km=0,则
k
1
l
1
=
k
2
l
2
=
⋯
=
k
m
l
m
成
立
.
\frac{k_1}{l_1}=\frac{k_2}{l_2}=\dots=\frac{k_m}{l_m}成立.
l1k1=l2k2=⋯=lmkm成立.
若
k
1
,
k
2
,
…
,
k
m
k_1,k_2,\dots,k_m
k1,k2,…,km全不为
0
,
0,
0,则有
(
l
1
k
2
−
k
1
l
2
)
α
2
+
(
l
1
k
3
−
k
1
l
3
)
α
3
+
⋯
+
(
l
1
k
m
−
k
1
l
m
)
α
m
=
0.
(l_1k_2-k_1l_2)\alpha_2+(l_1k_3-k_1l_3)\alpha_3+\dots+(l_1k_m-k_1l_m)\alpha_m=0.
(l1k2−k1l2)α2+(l1k3−k1l3)α3+⋯+(l1km−k1lm)αm=0.
由
α
2
,
…
,
α
m
\alpha_2,\dots,\alpha_m
α2,…,αm线性无关得
0
=
l
1
k
2
−
k
1
l
2
=
⋯
=
l
1
k
m
−
l
m
k
m
.
0=l_1k_2-k_1l_2=\dots=l_1k_m-l_mk_m.
0=l1k2−k1l2=⋯=l1km−lmkm.
故
k
1
l
1
=
k
2
l
2
=
⋯
=
k
m
l
m
.
\frac{k_1}{l_1}=\frac{k_2}{l_2}=\dots=\frac{k_m}{l_m}.
l1k1=l2k2=⋯=lmkm.