线代打卡07

已知 m m m个向量 α 1 , α 2 , … , α m \alpha_1,\alpha_2,\dots,\alpha_m α1,α2,,αm线性相关,但其中任意 m − 1 m-1 m1个都线性无关,证明:
( 1 ) (1) (1)如果等式 k 1 α 1 + k 2 α 2 + ⋯ + k m α = 0 k_1\alpha_1+k_2\alpha_2+\dots+k_m\alpha=0 k1α1+k2α2++kmα=0,则这些 k 1 , k 2 , … , k m k_1,k_2,\dots,k_m k1,k2,,km或者全为 0 , 0, 0,或者全不为 0. 0. 0.
( 2 ) (2) (2)如果存在两个等式 k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 , l 1 α 1 + l 2 α 2 + ⋯ + l m α m = 0 , k_1\alpha_1+k_2\alpha_2+\dots+k_m\alpha_m=0,l_1\alpha_1+l_2\alpha_2+\dots+l_m\alpha_m=0, k1α1+k2α2++kmαm=0,l1α1+l2α2++lmαm=0,其中 l 1 ≠ 0 , l_1\ne 0, l1=0,
k 1 l 1 = k 2 l 2 = ⋯ = k m l m . \frac{k_1}{l_1}=\frac{k_2}{l_2}=\dots=\frac{k_m}{l_m}. l1k1=l2k2==lmkm.

证: ( 1 ) (1) (1)如果 k 1 = k 2 = ⋯ = k m = 0 , k_1=k_2=\dots=k_m=0, k1=k2==km=0,则证毕.否则总有一个 k ≠ 0 , k\ne 0, k=0,不妨设 k 1 ≠ 0 , k_1\ne 0, k1=0,那么其余的 k i k_i ki都不能等于 0 , 0, 0,否则若某个 k i = 0 , k_i=0, ki=0,则有 ∑ j ≠ i k j α j = 0 \sum_{j\ne i}k_j\alpha_j=0 j=ikjαj=0,其中 k 1 ≠ 0. k_1\ne 0. k1=0.这与任意 m − 1 m-1 m1个都线性无关的假设矛盾,从而 k 1 , k 2 , … , k m k_1,k_2,\dots,k_m k1,k2,,km全不为 0. 0. 0.
( 2 ) (2) (2)由于 l 1 ≠ 0 , l_1\ne 0, l1=0, ( 1 ) (1) (1) l 1 , l 2 , … , l m l_1,l_2,\dots,l_m l1,l2,,lm全不为 0 , 0, 0,如果 k 1 = k 2 = ⋯ = k m = 0 , k_1=k_2=\dots=k_m=0, k1=k2==km=0,
k 1 l 1 = k 2 l 2 = ⋯ = k m l m 成 立 . \frac{k_1}{l_1}=\frac{k_2}{l_2}=\dots=\frac{k_m}{l_m}成立. l1k1=l2k2==lmkm.
k 1 , k 2 , … , k m k_1,k_2,\dots,k_m k1,k2,,km全不为 0 , 0, 0,则有
( l 1 k 2 − k 1 l 2 ) α 2 + ( l 1 k 3 − k 1 l 3 ) α 3 + ⋯ + ( l 1 k m − k 1 l m ) α m = 0. (l_1k_2-k_1l_2)\alpha_2+(l_1k_3-k_1l_3)\alpha_3+\dots+(l_1k_m-k_1l_m)\alpha_m=0. (l1k2k1l2)α2+(l1k3k1l3)α3++(l1kmk1lm)αm=0.
α 2 , … , α m \alpha_2,\dots,\alpha_m α2,,αm线性无关得 0 = l 1 k 2 − k 1 l 2 = ⋯ = l 1 k m − l m k m . 0=l_1k_2-k_1l_2=\dots=l_1k_m-l_mk_m. 0=l1k2k1l2==l1kmlmkm.

k 1 l 1 = k 2 l 2 = ⋯ = k m l m . \frac{k_1}{l_1}=\frac{k_2}{l_2}=\dots=\frac{k_m}{l_m}. l1k1=l2k2==lmkm.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值