因子分析和对结构性协方差矩阵的推断Factor Analysis and Inference for Structured Covariance Matrices

正交因子模型 The Orthogonal Factor Model
p p p个成分的观测值随机向量 X X X,有均值 μ \mu μ和协方差矩阵 ∑ \sum 。因子模型要求 X X X是线性依赖于几个不能观测的称之为公共因子 common factors的随机变量 F 1 , F 2 , . . . , F m F_{1},F_{2},...,F_{m} F1,F2,...,Fm p p p个附加的称之为误差有时也称为特殊因子 additional sources of variation的变量源 ε 1 , ε 2 , . . . , ε p \varepsilon_{1},\varepsilon_{2},...,\varepsilon_{p} ε1,ε2,...,εp.
因子分析模型为:
X 1 − μ 1 = l 11 F 1 + l 12 F 2 + . . . + l 1 m F m + ε 1 X 2 − μ 2 = l 21 F 1 + l 22 F 2 + . . . + l 2 m F m + ε 2 . . . X p − μ p = l p 1 F 1 + l p 2 F 2 + . . . + l p m F m + ε p X_{1}-\mu_{1}=l_{11}F_{1}+l_{12}F_{2}+...+l_{1m}F_{m}+\varepsilon_{1}\\ X_{2}-\mu_{2}=l_{21}F_{1}+l_{22}F_{2}+...+l_{2m}F_{m}+\varepsilon_{2}\\ .\\ .\\ .\\ X_{p}-\mu_{p}=l_{p1}F_{1}+l_{p2}F_{2}+...+l_{pm}F_{m}+\varepsilon_{p} X1μ1=l11F1+l12F2+...+l1mFm+ε1X2μ2=l21F1+l22F2+...+l2mFm+ε2...Xpμp=lp1F1+lp2F2+...+lpmFm+εp

或者写为矩阵形式:
X − μ ( p × 1 ) = L ( p × m ) F ( m × 1 ) + ε ( p × 1 ) \underset{(p×1)}{X-\mu}=\underset{(p×m)}{L}\underset{(m×1)}{F}+\underset{(p×1)}{\varepsilon} (p×1)Xμ=(p×m)L(m×1)F+(p×1)ε

称系数 l i j l_{ij} lij是第 i i i个变量在第 j j j个因子上的载荷,故矩阵 L L L因子载荷阵matrix of factor loadings。
我们设定以下假设:
E ( F ) = 0 ( m × 1 )   ,   C o v ( F ) = E [ F F ′ ] = I E ( ε ) = 0 ( p × 1 )   ,   C o v ( ε ) = E [ ε ε ′ ] = Ψ ( p × p ) = [ ψ 1 0 . . . 0 0 ψ 2 . . . 0 . . . . . . 0 0 . . . ψ p ] E(F)=\underset{(m×1)}{0} \,,\,Cov(F)=E[FF']=I\\ E(\varepsilon)=\underset{(p×1)}{0}\,,\,Cov(\varepsilon)=E[\varepsilon\varepsilon']=\underset{(p×p)}{\Psi}=\begin {bmatrix} \psi_{1} &0&...&0 \\0& \psi_{2} &...&0\\.&.&...&.\\0&0&...&\psi_{p} \end {bmatrix} E(F)=(m×1)0,Cov(F)=E[FF]=IE(

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值