二、时间序列分析---滞后算子(lag operator)

§4.p阶差分方程
p p p阶差分方程表示成为滞后算子形式:
( 1 − ϕ 1 L − ϕ 2 L 2 − ⋯ − ϕ p L p ) y t = w t ( 15 ) (1-\phi_1L-\phi_2L^2-\cdots-\phi_pL^p)y_t=w_t\qquad(15) (1ϕ1Lϕ2L2ϕpLp)yt=wt(15)

将上式左端的算子多项式分解为:
( 1 − ϕ 1 L − ϕ 2 L 2 − ⋯ − ϕ p L p ) = ( 1 − λ 1 L ) ( 1 − λ 1 L ) ⋯ ( 1 − λ p L ) ( 16 ) (1-\phi_1L-\phi_2L^2-\cdots-\phi_pL^p)=(1-\lambda_1L)(1-\lambda_1L)\cdots(1-\lambda_pL)\qquad(16) (1ϕ1Lϕ2L2ϕpLp)=(1λ1L)(1λ1L)(1λpL)(16)

这相当于寻求 ( λ 1 , . . . , λ p ) (\lambda_1,...,\lambda_p) (λ1,...,λp)使得下述代数多项式相等:
( 1 − ϕ 1 z − ϕ 2 z 2 − ⋯ − ϕ p z p ) = ( 1 − λ 1 z ) ( 1 − λ 1 z ) ⋯ ( 1 − λ p z ) ( 17 ) (1-\phi_1z-\phi_2z^2-\cdots-\phi_pz^p)=(1-\lambda_1z)(1-\lambda_1z)\cdots(1-\lambda_pz)\qquad(17) (1ϕ1zϕ2z2ϕpzp)=(1λ1z)(1λ1z)(1λpz)(17)

定义 λ = z − 1 \lambda=z^{-1} λ=z1,则可以将上述多项式左端表示成为(右端=0):
( λ p − ϕ 1 λ p − 1 − ϕ 2 λ p − 2 − ⋯ − ϕ p ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ p ) ( 18 ) (\lambda^p-\phi_1\lambda^{p-1}-\phi_2\lambda^{p-2}-\cdots-\phi_p)=(\lambda-\lambda_1)(\lambda-\lambda_2)\cdots (\lambda-\lambda_p)\qquad(18) (λpϕ1λp1ϕ2λp2ϕp)=(λλ1)(λλ2)(λλp)(18)

这意味着算子多项式的分解,就相当于求出差分方程特征方程的根。
如果差分方程的根相异,且全部落在单位圆内,则可以进行下述分式分解:
1 ( 1 − λ 1 L ) ( 1 − λ 1 L ) ⋯ ( 1 − λ p L ) = c 1 ( 1 − λ 1 L ) + c 2 ( 1 − λ 2 L ) + ⋯ + c p ( 1 − λ p L ) ( 19 ) \frac{1}{(1-\lambda_1L)(1-\lambda_1L)\cdots(1-\lambda_pL)}=\frac{c_1}{(1-\lambda_1L)}+\frac{c_2}{(1-\lambda_2L)}+\cdots+\frac{c_p}{(1-\lambda_pL)}\qquad(19) (1λ1L)(1λ1L)(1λpL)1=(1λ1L)c1+(1λ2L)c2++(1λpL)cp(19)

其中,
c i = λ i p − 1 λ 1 p − 1 + λ 2 p − 2 + ⋯ + λ p p − 1   ,   i = 1 , 2 , . . . p ( 20 ) c_i=\frac{\lambda_i^{p-1}}{\lambda_1^{p-1}+\lambda_2^{p-2}+\cdots+\lambda_p^{p-1}}\,,\,i=1,2,...p\qquad(20) ci=λ1p1+λ2p2++λpp1λip1,i=1,2,...p(20)

显然有: c 1 + c 2 + ⋯ + c p = 1 ( 21 ) c_1+c_2+\cdots+c_p=1\qquad(21) c1+c2++cp=1(21)
利用上述算子多项式分解,可以得到差分方程的解为:
y t = 1 ( 1 − ϕ 1 L − ϕ 2 L 2 − ⋯ − ϕ p L p ) w t = c 1 ( 1 − λ 1 L ) w t + c 2 ( 1 − λ 2 L ) w t + ⋯ + c p ( 1 − λ p L ) w t = c 1 ( 1 + λ 1 L + λ 1 2 L 2 + ⋯   ) w t + c 2 ( 1 + λ 2 L + λ 2 2 L 2 + ⋯   ) w t + ⋯ + c p ( 1 + λ p L + λ p 2 L 2 + ⋯   ) w t = ( c 1 + c 2 + ⋯ + c p ) w t + ( c 1 λ 1 + c 2 λ 2 + ⋯ + c p λ p ) w t − 1 + ⋯ + ( c 1 λ 1 j + c 2 λ 2 j + ⋯ + c p λ p j ) w t − j ( 22 ) y_t=\frac{1}{(1-\phi_1L-\phi_2L^2-\cdots-\phi_pL^p)}w_t\\ =\frac{c_1}{(1-\lambda_1L)}w_t+\frac{c_2}{(1-\lambda_2L)}w_t+\cdots+\frac{c_p}{(1-\lambda_pL)}w_t\\ =c_1(1+\lambda_1L+\lambda_1^2L^2+\cdots)w_t+c_2(1+\lambda_2L+\lambda_2^2L^2+\cdots)w_t+\cdots\\+c_p(1+\lambda_pL+\lambda_p^2L^2+\cdots)w_t\\=(c_1+c_2+\cdots+c_p)w_t+(c_1\lambda_1+c_2\lambda_2+\cdots+c_p\lambda_p)w_{t-1}+\cdots\\ +(c_1\lambda_1^j+c_2\lambda_2^j+\cdots+c_p\lambda_p^j)w_{t-j}\qquad(22) yt=(1ϕ1Lϕ2L2ϕpLp)1wt=(1λ1L)c1wt+(1λ2L)c2wt++(1λpL)cpwt=c1(1+λ1L+λ12L2+)wt+c2(1+λ2L+λ22L2+)wt++cp(1+λpL+λp2L2+)wt=(c1+c2++cp)wt+(c1λ1+c2λ2++cpλp)wt1++(c1λ1j+c2λ2j++cpλpj)wtj(22)

通过上述方程通解,可以得到动态反应乘子为:
∂ y t + j ∂ w t = c 1 λ 1 j + c 2 λ 2 j + ⋯ + c p λ p j , j = 0 , 1 , 2 , . . . ( 23 ) \frac{\partial y_{t+j}}{\partial w_t}=c_1\lambda_1^j+c_2\lambda_2^j+\cdots+c_p\lambda_p^j,j=0,1,2,...\qquad(23) wtyt+j=c1λ1j+c2λ2j++cpλpj,j=0,1,2,...(23)

命题:
外生变量 w t w_t wt y t y_t yt现值的影响和外生变量 w t w_t wt持续扰动对 y t y_t yt的动态影响乘子是:
∂ ∂ w t ( ∑ j = 0 ∞ β j y t + j ) = 1 ( 1 − ϕ 1 β − ϕ 2 β 2 − ⋯ − ϕ p β p ) \frac{\partial }{\partial w_t}(\sum_{j=0}^{\infty}\beta^jy_{t+j})=\frac{1}{(1-\phi_1\beta-\phi_2\beta^2-\cdots-\phi_p\beta^p)} wt(j=0βjyt+j)=(1ϕ1βϕ2β2ϕpβp)1

lim ⁡ j → ∞ [ ∂ y t + j ∂ w t + ∂ y t + j ∂ w t + 1 + ⋯ + ∂ y t + j ∂ w t + j ] = 1 ( 1 − ϕ 1 − ϕ 2 − ⋯ − ϕ p ) ( 左 式 的 和 表 示 长 期 乘 数 ) \lim_{j\to \infty}\left[ \frac{\partial y_{t+j}}{\partial w_t}+\frac{\partial y_{t+j}}{\partial w_{t+1}}+\cdots+\frac{\partial y_{t+j}}{\partial w_{t+j}} \right]=\frac{1}{(1-\phi_1-\phi_2-\cdots-\phi_p)}(左式的和表示长期乘数) jlim[wtyt+j+wt+1yt+j++wt+jyt+j]=(1ϕ1ϕ2ϕp)1()

p r o o f : proof: proof:将差分方程的解表示为:
y t = φ 1 w t + φ 2 w t − 1 + φ 3 w t − 3 + ⋯ y_t=\varphi_1w_t+\varphi_2w_{t-1}+\varphi_3w_{t-3}+\cdots yt=φ1wt+φ2wt1+φ3wt3+
其中, φ j = c 1 λ 1 j + c 2 λ 2 j + ⋯ + c p λ p j , j = 0 , 1 , 2 , . . . \varphi_j=c_1\lambda_1^j+c_2\lambda_2^j+\cdots+c_p\lambda_p^j,j=0,1,2,... φj=c1λ1j+c2λ2j++cpλpj,j=0,1,2,...
设:
φ ( L ) = φ 1 L + φ 2 L 2 + φ 3 L 3 + ⋯ \varphi(L)=\varphi_1L+\varphi_2L^2+\varphi_3L^3+\cdots φ(L)=φ1L+φ2L2+φ3L3+
利用多项式算子表示:
y t = φ ( L ) w t y_t=\varphi(L)w_t yt=φ(L)wt
w t w_t wt y t y_t yt现值的影响可表示为:
∂ ∂ w t ( ∑ j = 0 ∞ β j y t + j ) = ∑ j = 0 ∞ β j ∂ y t + j ∂ w t = ∑ j = 0 ∞ β j φ j = φ ( β ) \frac{\partial }{\partial w_t}(\sum_{j=0}^{\infty}\beta^jy_{t+j})=\sum_{j=0}^{\infty}\beta^j\frac{\partial y_{t+j}}{\partial w_t}=\sum_{j=0}^{\infty}\beta^j\varphi_j=\varphi(\beta) wt(j=0βjyt+j)=j=0βjwtyt+j=j=0βjφj=φ(β)

注意到:
φ ( L ) = φ 1 L + φ 2 L 2 + φ 3 L 3 + ⋯ = [ ( 1 − λ 1 L ) … ( 1 − λ p L ) ] − 1 \varphi(L)=\varphi_1L+\varphi_2L^2+\varphi_3L^3+\cdots=[(1-\lambda_1L)\dots(1-\lambda_pL)]^{-1} φ(L)=φ1L+φ2L2+φ3L3+=[(1λ1L)(1λpL)]1
因此有:
φ ( L ) = [ ( 1 − λ 1 β ) … ( 1 − λ p β ) ] − 1 = [ ( 1 − ϕ 1 β − ϕ 2 β 2 − ⋯ − ϕ p β p ) ] − 1 \varphi(L)=[(1-\lambda_1\beta )\dots(1-\lambda_p\beta )]^{-1}=[(1-\phi_1\beta-\phi_2\beta^2-\cdots-\phi_p\beta^p)]^{-1} φ(L)=[(1λ1β)(1λpβ)]1=[(1ϕ1βϕ2β2ϕpβp)]1
长期乘数相当于 β = 1 \beta=1 β=1的情形。

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值