仿射变换与射影变换

仿射变换(Affine Transformation)与射影变换(Projective Transformation)

仿射变换和射影变换都是计算机视觉和图像处理中的常见几何变换,它们用于对图像或坐标进行变换。二者的主要区别在于是否保持平行性变换的自由度


1. 仿射变换(Affine Transformation)

仿射变换是一种线性变换,它保持直线的平行关系,但不一定保持长度和角度。

仿射变换的数学表达

仿射变换的矩阵形式为:
[x′y′1]=[abtxcdty001][xy1] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & tx \\ c & d & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = ac0bd0txty1 xy1

或者简写为:
P′=AP P' = A P P=AP
其中:

  • [abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[acbd]2×22\times22×2 的线性变换矩阵,决定了缩放、旋转、剪切等变换。
  • [txty]\begin{bmatrix} tx \\ ty \end{bmatrix}[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值