仿射变换(Affine Transformation)与射影变换(Projective Transformation)
仿射变换和射影变换都是计算机视觉和图像处理中的常见几何变换,它们用于对图像或坐标进行变换。二者的主要区别在于是否保持平行性和变换的自由度。
1. 仿射变换(Affine Transformation)
仿射变换是一种线性变换,它保持直线的平行关系,但不一定保持长度和角度。
仿射变换的数学表达
仿射变换的矩阵形式为:
[x′y′1]=[abtxcdty001][xy1] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & tx \\ c & d & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
x′y′1
=
ac0bd0txty1
xy1
或者简写为:
P′=AP P' = A P P′=AP
其中:
- [abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}[acbd] 是 2×22\times22×2 的线性变换矩阵,决定了缩放、旋转、剪切等变换。
- [txty]\begin{bmatrix} tx \\ ty \end{bmatrix}[

最低0.47元/天 解锁文章
1383

被折叠的 条评论
为什么被折叠?



