"""自定义输入dataset类 自己数据集第二种处理方式""" import torch from torch import utils import glob from torch.utils import data from PIL import Image from torchvision import transforms #必须继承,必须创建__getitem__方法,(实现它才可以实现切片)__len__方法 class Mydataset(data.Dataset): #初始化要传入一个路径 def __init__(self,root): self.imgs_path =root def __getitem__(self, index): img_path = self.imgs_path[index] return img_path def __len__(self): return len(self.imgs_path) #glob可以获取一定条件下所有路径 all_imgs_path = glob.glob(r'./dataset/4weather/dataset2/*.jpg') #返回的事一个列表 weather_dataset = Mydataset(all_imgs_path) wh_dl = torch.utils.data.DataLoader(weather_dataset,batch_size = 4) print(weather_dataset[1:3])
自定义输入dataset
最新推荐文章于 2024-07-12 09:16:44 发布
该文章展示了如何在PyTorch中创建一个自定义的数据集类,该类继承自`data.Dataset`,并实现了`__getitem__`和`__len__`方法以支持数据切片。通过`glob.glob`获取图像路径,然后使用`DataLoader`进行批量加载。示例代码创建了一个处理天气图像数据集的实例。
摘要由CSDN通过智能技术生成