京东平台小家电用户画像分析报告

通过对小家电用户一周订单数据的分析,发现主要消费者为25-35岁的已婚男性,集中在一线城市,学历较高且对促销敏感。电风扇销量虽高但受季节影响,推荐秋季促销主打净水器、饮水机、加湿器等产品。活动宜在周二、周六的10点和22点进行,注重产品口碑和促销形式创新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目背景

由于近段时间小家电类目的订单数量、产品浏览量、搜索数量等指标均有所下降,现在计划进行一次促销活动,活动前希望能针对小家电的用户特征给出一些建议。

数据:有两个表,user_info用户信息,order_d订单信息,从数据库提取了8月13日~8月19日一周的订单数据。

字段说明如下:
在这里插入图片描述
分析思路
一场促销活动必然包含以下几个部分:
● 促销活动的受众 -> 用户的基本属性
● 促销活动的时间 -> 用户的购物行为属性
● 促销活动的产品 -> 用户的偏好属性
从这些角度去勾勒小家电消费群体的用户画像,从用户特征本身来为促销活动提供建议和指导。
在这里插入图片描述

二、用户基本属性分析

性别和年龄

小家电用户以男性居多,但男女比例相差不是特别大;
用户年龄多在45岁以下,以25-35岁的青年人居多。
在这里插入图片描述

地域分布

小家电类目的客户量排名前五的省份为广东、江苏、北京、上海、山东,除北京外,其它省份均为东部沿海省份。
用户量最多的为北上广深四个超一线城市,用户大都集中在一线城市。
在这里插入图片描述

婚育状况

近七成用户已婚,超六成用户有孩子的可能性高
在这里插入图片描述

教育水平

绝大多数小家电用户学历在专科及以上,说明该类目的用户学历水平比较高;
大多数用户从事互联网、白领、教师等职业。
在这里插入图片描述

三、行为属性分析

购买商品类目分布

从小家电细分品类订单量来看,电风扇的销量遥遥领先,但存在明显的季节周期性,考虑到季节更替,本次促销活动开展时夏天已经结束,因此在本次促销活动中因选择净水器、饮水机、加湿器等产品作为主打产品,特别是加湿器在秋天预期销量较好,应该适当加大力度;另外可以利用往年同期销售数据进行分析,看能否找到其它合适的产品。
在这里插入图片描述

从时间维度进行订单拆解

从星期的维度来看,周六和周二的订单量最多,周三订单最少;
从时间维度来看,10点,14点,22点这三个时间点订单量分布较多
在这里插入图片描述

用户的促销/评价敏感度

绝大部分的小家电消费用户对促销高度敏感,但是仅有一小部分对促销活动是极度敏感的。这说明针对小家电消费用户的促销活动应当确定合适的促销力度,并在促销活动的形式上多下功夫。
绝大部分的小家电消费用户对产品的评论极度敏感。这说明小家电消费用户非常看重产品的口碑和使用反馈,在促销选品上可以选择评价高、评论数多的产品;在活动文案上可以多体现促销产品的口碑。
在这里插入图片描述

四、结论

小家电消费用户的特征:

  • 多数为来自一线城市的男性,但男女比例相差不是特别大
  • 大多年龄在30左右,已婚已孕,学历水平较高
  • 从事互联网、教师等收入相对高的行业
  • 喜欢在周二和周六的早上10点左右和晚上10点左右下单
  • 关注产品的促销活动和口碑良好的产品

对于促销活动的建议:

  • 文案:采取无性别风格的文案,突出产品对于家庭生活品质的提升,突出产品口碑
  • 产品:选择口碑好的净水器、饮水机、加湿器等产品
  • 时间:活动应该选在周二和周六的早9点和晚9点进行推送

注:因为此用户和订单数据集只有7天的数据,刻画的用户画像可能存在偏差,上面分析、结论及建议只是根据现有的数据得出,谨供参考。

五、代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white',{
   'font.sans-serif':['simhei','Arial']})
user_df=pd.read_csv('./xjd/xjd_user_info.csv',sep='\t')
order_df=pd.read_csv('./xjd/xjd_order_d.csv',sep='\t')
order_df.info()

在这里插入图片描述

user_df.info()

在这里插入图片描述

pt_gender=user_df['ulp_base_sex'].value_counts().reset_index().rename(columns={
   'index':'性别','ulp_base_sex':'用户数'})
pt_gender.性别=pt_gender['性别'].map({
   1:'男', 0:'女',-1:'未知'})

pt_age=user_df['ulp_base_age'].value_counts().sort_index().reset_index().rename(columns={
   'index':'年龄段','ulp_base_age':'用户数'})
pt_age.年龄段=pt_age['年龄段'].map({
   -1:'未知',1:'18岁以下',2:'18-25岁',3:'25-35岁',4:'35-45岁',5:'45-55岁',6:'55岁以上'})

fig, ax = plt.subplots(1,2,figsize=(15,6))

ax1=plt.subplot(121)
ax1.set_title('小家电用户的性别分布', fontsize=20)
plt.pie(pt_gender['用户数'][0:2], labels = pt_gender['性别'][0:2], autopct = '%.2f%%', startangle = 90,textprops={
   'fontsize': 12}, pctdistance=1.35,colors = ['#1a445d','#5292ab'])
plt
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值