SVM对偶问题手推以及代码实现

本文介绍了支持向量机(SVM)的基本概念,它是一种基于统计学习理论的二分类方法。文章详细阐述了如何寻找最大边界超平面,并重点讲解了SVM的对偶问题公式推导过程,同时提供了代码实现,帮助读者理解和支持向量机的实际应用。
摘要由CSDN通过智能技术生成

什么是Support Vector Machine

官方定义:
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的泛化能力。
SVM一般用于解决二分类问题(也可以解决多分类和回归问题,本文暂不涉及),数学化语言概述如下:

样本数据:n个样本,p个输入在这里插入图片描述
(LaTEX还不太熟悉,见谅。。)
,1个输出y

第i个样本的输入: 在这里插入图片描述

输出y:一般用1和-1作为两类样本的标签
在这里插入图片描述
那么怎么选取平面或者线呢
支持向量机中,对最好分类器的定义是:最大边界超平面,即距两个类别的边界观测点最远的超平面。在二维情况下,就是找最宽的马路,在三维问题中,就是找最厚的木板。
由于最大边界超平面仅取决于两类别的边界点,这些点被称为支持向量,因此这种算法被命名为支持向量机。

对偶问题公式推导

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

代码实现

import numpy as np
import pylab as pl
from sklearn import svm

# we create 40 separable points
X = np.r_[np.random.randn(20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值