机器学习-白板推导 P6_2 (SVM 模型求解 对偶)

SVM 模型求解 对偶问题

primal problem 原问题

带 约 束 : { min ⁡ w , b 1 2 w T w s . t .      y i ( w T x i + b ) ≥ 1 , f o r ∀ i = 1 , 2.. N 带约束: \begin{cases} \min_{w,b} \frac{1}{2}w^Tw \\ s.t. \;\; y_i(w^Tx_i+b) \geq 1, for \forall i=1,2..N \end{cases} {minw,b21wTws.t.yi(wTxi+b)1,fori=1,2..N

拉格朗日函数:
L ( w , b , λ ) = 1 2 w T w + ∑ i = 1 N λ i ( 1 − y i ( w T x i + b ) ) L(w,b,\lambda)=\frac{1}{2}w^Tw+\sum_{i=1}^N \lambda_{i}(1-y_i(w^Tx_i+b)) L(w,b,λ)=21wTw+i=1Nλi(1yi(wTxi+b))
λ ≥ 0      1 − y i ( w T x i + b ) ≤ 0 \lambda \geq 0\;\;1-y_i(w^Tx_i+b)\leq0 λ01yi(wTxi+b)0

无 约 束 : { min ⁡ w , b max ⁡ λ L ( w , b , λ ) s . t .      λ ≥ 0 无约束: \begin{cases} \min_{w,b} \max_{\lambda} L(w,b,\lambda) \\ s.t. \;\; \lambda \geq 0 \end{cases} {minw,bmaxλL(w,b,λ)s.t.λ0

{ i f : 1 − y i ( w T x i + b ) > 0 , max ⁡ λ L ( w , b , λ ) = 1 2 w T w + ∞ = ∞ i f : 1 − y i ( w T x i + b ) ≤ 0 , max ⁡ λ L ( w , b , λ ) = 1 2 w T w + 0 = 1 2 w T w , min ⁡ w , b max ⁡ λ L ( w , b , λ ) = min ⁡ w , b 1 2 w T w \begin{cases} if:1-y_i(w^Tx_i+b)>0,\max_{\lambda} L(w,b,\lambda)= \frac{1}{2}w^Tw + \infty=\infty \\ if:1-y_i(w^Tx_i+b) \leq 0,\max_{\lambda} L(w,b,\lambda) = \frac{1}{2}w^Tw+0= \frac{1}{2}w^Tw, \min_{w,b} \max_{\lambda} L(w,b,\lambda)= \min_{w,b} \frac{1}{2}w^Tw \end{cases} {if:1yi(wTxi+b)>0maxλL(w,b,λ)=21wTw+=if:1yi(wTxi+b)0maxλL(w,b,λ)=21wTw+0=21wTw,minw,bmaxλL(w,b,λ)=minw,b21wTw
⇒ \Rightarrow
min ⁡ w , b max ⁡ λ L ( w , b , λ ) = min ⁡ w , b ( ∞ , 1 2 w T w ) = min ⁡ w , b 1 2 w T w \min_{w,b} \max_{\lambda} L(w,b,\lambda)=\min_{w,b}(\infty, \frac{1}{2}w^Tw)=\min_{w,b}\frac{1}{2}w^Tw minw,bmaxλL(w,b,λ)=minw,b(,21wTw)=minw,b21wTw

dual problem 对偶问题

强 对 偶 : { max ⁡ λ min ⁡ w , b L ( w , b , λ ) s . t .      λ ≥ 0 强对偶:\begin{cases} \max_{\lambda} \min_{w,b} L(w,b,\lambda) \\ s.t. \;\; \lambda \geq 0 \end{cases} {maxλminw,bL(w,b,λ)s.t.λ0
若对偶关系: min ⁡ max ⁡ L ≥ max ⁡ min ⁡ L \min \max L \geq \max \min L minmaxLmaxminL

强对偶关系: min ⁡ max ⁡ L = max ⁡ min ⁡ L \min \max L = \max \min L minmaxL=maxminL

凸优化二次型问题,满足强对偶。

min ⁡ w , b L ( w , b , λ ) \min_{w,b} L(w,b,\lambda) minw,bL(w,b,λ)

∂ L ∂ b = ∂ ∂ b [ ∑ i = 1 N λ i − ∑ i = 1 N λ i y i ( w T x i + b ) ] = ∂ ∂ b [ − ∑ i = 1 N λ i y i b ] = − ∑ i = 1 N λ i y i = 0 \begin{aligned} \frac{\partial L}{\partial b} &=\frac{\partial}{\partial b}[\sum_{i=1}^N \lambda_i - \sum_{i=1}^N \lambda_i y_i(w^Tx_i+b)] \\ &=\frac{\partial}{\partial b}[ - \sum_{i=1}^N \lambda_i y_ib] \\ &=- \sum_{i=1}^N \lambda_i y_i = 0 \end{aligned} bL=b[i=1Nλii=1Nλiyi(wTxi+b)]=b[i=1Nλiyib]=i=1Nλiyi=0
带入 L ( w , b , λ ) L(w,b,\lambda) L(w,b,λ)
L ( w , b , λ ) = 1 2 w T w + ∑ i = 1 N λ i ( 1 − y i ( w T x i + b ) ) = 1 2 w T w + ∑ i = 1 N λ i − ∑ i = 1 N λ i y i w T x i − ∑ i = 1 N λ i y i b = 1 2 w T w + ∑ i = 1 N λ i − ∑ i = 1 N λ i y i w T x i \begin{aligned} L(w,b,\lambda) &=\frac{1}{2}w^Tw+\sum_{i=1}^N \lambda_{i}(1-y_i(w^Tx_i+b)) \\ &=\frac{1}{2}w^Tw+\sum_{i=1}^N\lambda_{i} -\sum_{i=1}^N\lambda_{i}y_iw^Tx_i -\sum_{i=1}^N\lambda_{i} y_i b\\ &=\frac{1}{2}w^Tw+\sum_{i=1}^N\lambda_{i} -\sum_{i=1}^N\lambda_{i}y_iw^Tx_i \end{aligned} L(w,b,λ)=21wTw+i=1Nλi(1yi(wTxi+b))=21wTw+i=1Nλii=1NλiyiwTxii=1Nλiyib=21wTw+i=1Nλii=1NλiyiwTxi

∂ L ∂ w = 1 2 w − ∑ i = 1 N λ i y i x i = 0 ⇒ w = ∑ i = 1 N λ i y i x i \begin{aligned} &\frac{\partial L}{\partial w}=\frac{1}{2}w-\sum_{i=1}^N\lambda_{i}y_ix_i=0 \\ & \Rightarrow w=\sum_{i=1}^N\lambda_{i}y_ix_i \end{aligned} wL=21wi=1Nλiyixi=0w=i=1Nλiyixi
L ( w , b , λ ) = 1 2 ( ∑ i = 1 N λ i y i x i ) T ( ∑ i = 1 N λ i y i x i ) − ∑ i = 1 N λ i y i ( ∑ j = 1 N λ j y j x j ) T x i + ∑ j = 1 N λ i = 1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j − ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x j T x i + ∑ j = 1 N λ i = − 1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j + ∑ j = 1 N λ i \begin{aligned} L(w,b,\lambda) &= \frac{1}{2}(\sum_{i=1}^N\lambda_{i}y_ix_i)^T(\sum_{i=1}^N\lambda_{i}y_ix_i) - \sum_{i=1}^N\lambda_{i}y_i(\sum_{j=1}^N\lambda_{j}y_jx_j)^Tx_i+\sum_{j=1}^N\lambda_i \\ &= \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j x_i^T x_j - \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j x_j^T x_i+\sum_{j=1}^N\lambda_i \\ & = -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j x_i^T x_j+\sum_{j=1}^N\lambda_i \\ \end{aligned} L(w,b,λ)=21(i=1Nλiyixi)T(i=1Nλiyixi)i=1Nλiyi(j=1Nλjyjxj)Txi+j=1Nλi=21i=1Nj=1NλiλjyiyjxiTxji=1Nj=1NλiλjyiyjxjTxi+j=1Nλi=21i=1Nj=1NλiλjyiyjxiTxj+j=1Nλi

等 价 代 换 : { max ⁡ λ − 1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j + ∑ j = 1 N λ i s . t .      λ i ≥ 0 等价代换:\begin{cases} \max_{\lambda} -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j x_i^T x_j+\sum_{j=1}^N\lambda_i \\ s.t. \;\; \lambda_i \geq 0 \end{cases} {maxλ21i=1Nj=1NλiλjyiyjxiTxj+j=1Nλis.t.λi0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值