SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain Medical Image Segmentation
摘要
跨域分布偏移是医学图像分析的常见问题,因为来自不同设备的医学图像通常具有不同的域分布。测试时自适应(TTA)是一种很有前途的解决方案,它以无监督的方式在测试时有效地使源域分布适应目标域分布,这越来越受到人们的关注。以前应用于医学图像分割任务的 TTA 方法通常对所有语义类别进行全局域适应,但由于域移位对不同语义类别的影响可能不同,因此全局域适应将是次优的。
本文提出了语义感知测试时适应(SATTA),它可以单独更新模型参数以适应每个语义类别的目标域分布。具体来说,SATTA部署了一个不确定性估计模块,以有效地测量域移位中语义类别的差异。然后,根据估计的差异开发语义自适应学习率,以实现每个语义类别的个性化适应程度。最后,提出语义代理对比学习,利用语义自适应学习速率对模型参数进行单独调整。
本文方法
从图中可以看出,训练过程多了一个种类代理任务
在领域自适应过程种,种类代理的权重被迁移过去,特征提取器也被迁移过去,但是会随着对比损失动态的改变,对比由两个线性输出层加上不确定性估计层
不确定性估计公式如下
实验结果