一种用于医学图像分割的多源模型适应方法

本文提出了一种无标签转移性度量(LFTM)和Transferability-GuidedModelAdaptation(TGMA)框架,用于医疗图像分割中的多源模型适应。通过评估源模型的转移性和区分不同源域的重要性,避免负迁移并提高目标模型性能。实验结果显示了该方法在前列腺分割数据集上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transferability-Guided Multi-source Model Adaptation for Medical Image Segmentation

摘要

传统方法假定源数据来自单个客户端,不能很好地利用多源域的互补知识,且需要在训练过程中访问源数据,这在隐私保护和内存存储方面效率低下。为解决这些挑战,研究了一种新颖的实际问题,即多源模型适应(MSMA),旨在将多个源模型转移到未标记的目标域而无需任何源数据。为了消除负迁移,提出了一种转移性引导模型适应(TGMA)框架,其中设计了一个无标签的转移性度量(LFTM)来评估源模型的转移性。基于设计的度量,计算了实例级转移性矩阵(ITM)和域级转移性矩阵(DTM),用于改善目标模型初始化。在多站点前列腺分割数据集上的实验结果证明了该框架的优越性。

本文方法

在这里插入图片描述
(a) 无标签可转移性指标(LFTM)估计器:用于评估源模型的转移性,即源域模型在目标域中的适应能力,从而帮助选择最适合目标域的源模型。

(b) 可转移性引导的模型选择:根据计算的转移性指标,选择对目标域适应性最好的源模型,以初始化目标模型。

© 可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值