可学习的细分图神经网络在功能性脑网络分析和可解释认知障碍诊断中的应用

Learnable Subdivision Graph Neural Network for Functional Brain Network Analysis and Interpretable Cognitive Disorder Diagnosis

摘要

该文章提出了一种可学习的细分图神经网络(Learnable Subdivision Graph Neural Network, LSGNN)用于功能性脑网络分析和可解释的认知障碍诊断。主要包含以下内容:

  1. 背景:
    大脑的不同功能配置,也称为"大脑状态",反映了大脑认知活动的连续流。
    这些不同的大脑状态可以赋予大脑网络以异质的功能。
    从功能性大脑网络中提取信息对神经科学分析和大脑障碍诊断很有帮助。
    图神经网络(GNN)在学习网络表示方面表现优秀,但现有GNN方法很少关注大脑网络的异质性,特别是由内在大脑状态引起的大脑网络功能的异质性。
  2. 方法:
    提出LSGNN,实现可学习的细分方法,将大脑网络编码到与功能配置对应的多个潜在特征子空间,并在每个子空间中分别进行大脑网络特征提取。
    考虑大脑状态之间的复杂交互,采用自注意机制获得联合潜在空间中的综合大脑网络表示。
  3. 实验:
    在一个公开的认知障碍数据集上进行实验。
    结果表明,该方法可以取得出色的性能,并且在潜在空间中体现大脑网络功能的可解释性。
    代码地址

方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值