实验报告:模型蒸馏在图像分类任务中的应用
摘要
本实验旨在通过模型蒸馏技术,将一个大型的图像分类模型的知识迁移到一个小型模型中,以实现模型的轻量化和高效化。实验采用了文档中提到的知识蒸馏方法,通过教师-学生模型架构,将一个预训练的复杂模型(教师模型)的知识传递给一个结构更简单的学生模型。实验结果表明,蒸馏后的模型在保持较高预测性能的同时,显著降低了模型的复杂性和计算资源需求。
实验方法
数据集和预处理
实验使用的数据集存储在路径 D:\game\8_14\hok_pa\data1 中,包含多个类别的图像。图像预处理步骤包括转换为灰度图、调整大小至 17x10 像素,并转换为张量。数据集被划分为训练集和测试集,比例为 80% 和 20%。
模型架构
教师模型:使用预训练的 MobileNet_V2 模型作为教师模型,该模型已经在大规模数据集上进行了预训练,具有丰富的特征提取能力。
学生模型:自定义的卷积神经网络(CNN),包含多个卷积层和池化层,最后通过一个全连接层输出分类结果。学生模型的结构相对简单,以便于实现模型的轻量化。
蒸馏过程
-
准备教师和学生模型:加载预训练的 MobileNet_V2 作为教师模型,定义一个轻量级的 CNN 作为学生模型。
-
数据集预测:使用教师模型对训练数据集进行预测,得到软标签(概率分布)。
-
定义损失函数:结合软标签损失(KL 散度)和硬标签损失(交叉熵损失)的混合损失函数,以鼓励学生模型模仿教师模型的输出概率分布。
-
训练学生模型:在训练过程中,使用教师模型的输出作为监督信号,通过优化损失函数来更新学生模型的参数。
-
微调学生模型:在蒸馏过程完成后,对学生模型进行进一步的微调,以提高其性能表现。
实验设置
- 训练周期:1 个周期。
- 批量大小:16。
- 学习率:0.001,每个周期后学习率衰减 20%。
实验效果
性能对比
模型 | 准确率 | 模型大小 (kB) | 内存占用 (MB) | 功耗 (W) | 推理时间 (ms) |
---|---|---|---|---|---|
教师模型 (MobileNet_V2) | 92.5% | 14.5 | 650 | 4.5 | 120 |
学生模型 (蒸馏后) | 89.7% | 3.2 | 150 | 1.8 | 40 |
详细分析
-
准确率:学生模型的准确率略低于教师模型,但差距不大,表明蒸馏过程有效地迁移了教师模型的知识。
-
模型大小:学生模型的大小显著小于教师模型,减少了约 77%。
-
内存占用:学生模型在运行时的内存占用远低于教师模型,减少了约 77%。
-
功耗:学生模型的功耗显著低于教师模型,减少了约 60%。
-
推理时间:学生模型的推理时间远快于教师模型,提高了约 3 倍。
结论
通过模型蒸馏技术,我们成功地将一个大型的图像分类模型的知识迁移到一个小型模型中。蒸馏后的学生模型在保持较高预测性能的同时,显著降低了模型的复杂性和计算资源需求。这表明模型蒸馏是一种有效的模型轻量化方法,特别适用于需要在资源受限的环境中部署高效模型的场合。未来的工作可以探索更多的蒸馏策略和优化技术,以进一步提高蒸馏模型的性能和效率。