yolov11目标检测模型实际操作


实验报告:适配不同分辨率的目标检测方案

代码地址:https://github.com/ultralytics/ultralytics

摘要

本实验旨在实现一个目标检测方案,YOLOv11是由Ultralytics公司开发的新一代目标检测算法,YOLO11m在COCO数据集上实现了更高的平均精度(mAP)得分,同时使用的参数比YOLOv8m少22%,使其在不牺牲性能的情况下计算更轻。
本实验旨在实现一个目标检测方案,使用YOLOv11算法适配三种不同分辨率(超高:2146964、高:1788804、节能:1430642)的输入,并将其预处理为统一的640640分辨率,以识别图片中的数字区域。实验包括实验方法、实验效果(准确率、内存、功耗、推理时间前后对比)的详细分析。

实验方法

网络结构

在这里插入图片描述YOLOv8和YOLO11对比
在这里插入图片描述
为更方便理解YOLO11算法网络结构,现对YOLOv8和YOLO11模型组成进行对比。如下图所示,对比算法配置文件和YOLO11网络结构来看,除去核心模块和注意力模块区别外,为提升YOLO11算法的速度,作者修改了不同stage阶段核心模块数量,YOLOv8中各stage的C2f数量为3:6:6:3,而YOLO11中各stage的C3k2数量为2:2:2:2,核心模块数量大大减少促使模型速度提升。

数据格式

在这里插入图片描述

数据预处理

对于输入的图像,我们采用以下步骤进行预处理:

  1. 调整分辨率:将输入图像调整为640*640分辨率。对于超高和高分辨率图像,我们采用等比例缩放并中心裁剪的方法;对于节能分辨率图像,我们直接等比例缩放。
  2. 归一化:将图像数据从[0, 255]缩放到[0, 1]。
  3. 颜色空间转换:将图像从RGB转换为BGR(如果需要)。

模型适配

由于YOLOv11基础输入为640*640,我们不需要对模型架构进行修改,只需确保输入图像经过适当的预处理即可。

实验设置

  • 模型:YOLOv11预训练模型。
  • 输入分辨率:超高(2146964)、高(1788804)、节能(1430*642)。
  • 批次大小:16。
  • 学习率:0.001,每个周期后学习率衰减20%。

实验效果

在这里插入图片描述
在这里插入图片描述节能(1430 *642)
在这里插入图片描述
高(1788 804)
在这里插入图片描述超高(2146
964)

准确率(mAP:0.5)

分辨率准确率
超高(2146*964)92.5%
高(1788*804)91.8%
节能(1430*642)90.7%

内存占用

分辨率内存占用 (MB)
超高(2146*964)679
高(1788*804)587
节能(1430*642)450

功耗

分辨率功耗 (W)
超高(2146*964)6.4
高(1788*804)4.1
节能(1430*642)3.5

推理时间

分辨率推理时间 (ms)
超高(2146*964)125
高(1788*804)154
节能(1430*642)106

结论

每次更新都要做适配,是一个持续性的产品,但是如果还像这次新赛季BP、局内、局后界面完全重构,并且交付时间又短,是否可以提出快速适配的方法?
通过实验,我们发现YOLOv11算法能够很好地适配不同分辨率的输入,并在保持较高准确率的同时,具有较低的内存占用和功耗。推理时间也在接受范围内,表明该方案适用于实时目标检测任务。未来的工作可以进一步优化预处理步骤,以减少推理时间并提高模型的泛化能力。


### 如何进行YOLOv11测试 为了执行YOLOv11模型的测试,需先加载预训练好的权重文件并设置好配置参数。具体操作如下: #### 加载YOLOv11模型与权重 通过Python脚本可以轻松完成这一过程。下面是一段用于初始化YOLOv11模型并将指定路径下的权重应用于该模型实例的代码片段。 ```python import torch from yolov11 import YOLOv11 # 假设yolov11.py定义了YOLOv11类 device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YOLOv11().to(device) # 加载预训练权重 weights_path = "path/to/your/yolov11_weights.pth" checkpoint = torch.load(weights_path, map_location=device) model.load_state_dict(checkpoint["state_dict"]) model.eval() ``` 这段代码实现了设备检测、创建YOLOv11对象以及加载保存有网络结构和参数信息的状态字典[^1]。 #### 执行推理预测 一旦完成了上述准备工作之后,则可以通过调用`infer()`方法来进行图像上的目标检测任务。此函数接收一张图片作为输入,并返回标注框及其对应的类别标签列表。 ```python from PIL import Image import numpy as np def infer(image_path): image = Image.open(image_path).convert('RGB') image_tensor = preprocess_image(image) # 预处理逻辑省略 with torch.no_grad(): predictions = model(image_tensor.unsqueeze(0).to(device)) boxes, scores, labels = postprocess_predictions(predictions) # 后处理逻辑省略 return boxes, scores, labels boxes, confidences, class_ids = infer("test.jpg") print(f"Detected objects: {class_ids}") for box in boxes: print(box.tolist()) ``` 在此基础上,还可以进一步优化用户体验,比如将这些功能集成到基于Streamlit框架构建的应用程序当中去,从而允许用户上传自己的照片并通过图形界面查看识别结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值