给图片添加分割线

import pandas as pd
import SimpleITK as sitk
import os
import pydicom
import numpy as np 
import matplotlib.pyplot as plt 
import nrrd 
import matplotlib.image as mpimg
from PIL import Image 
import glob
import cv2 
import pickle 
jpg_seg_read_path = "/Users/yxk/Desktop/核磁项目/ALL_sample/seg_pic/安芮716608_000007_seg.jpg"
seg_image = Image.open(jpg_seg_read_path)
seg_img_arr = np.array(seg_image)
print(seg_img_arr.shape)

print(np.sum(seg_img_arr[:,:,0] != seg_img_arr[:,:,2]))
print(np.sum(seg_img_arr[:,:,0] != seg_img_arr[:,:,1]))
print(np.sum(seg_img_arr[:,:,1] != seg_img_arr[:,:,2]))

plt.imshow(seg_img_arr,cmap='gray')
# seg_img_arr

在这里插入图片描述

给三维的图片添加分割线

seg_img_arr[100:300,200,:]=[255,0,0] # 垂直线:x=200
seg_img_arr[100:300,300,:]=[0,255,0] # 垂直线:x=300
seg_img_arr[100,200:300,:]=[0,0,255] # 垂直线:x=300
seg_img_arr[300,200:300,:]=[0,0,255] # 垂直线:x=300
plt.imshow(seg_img_arr,cmap='gray')
    
# img_arr[mask_pos[:,:,0],:] = [255,0,0] ## 注意numpy array是可以一次性赋值的,不需要一个个赋值
# pil_img = Image.fromarray(img_arr)
# #dcm_id,_ = file.split(".")
# pil_img.save(save_mask_dir+ patient + str(id) + "_" +'{0:06d}'.format(i)+ "_mask.jpg")

在这里插入图片描述

example

import pandas as pd
import SimpleITK as sitk
import os
import pydicom
import numpy as np 
import matplotlib.pyplot as plt 
import nrrd 
import matplotlib.image as mpimg
from PIL import Image 
import glob
import cv2 
import pickle 

jpg_seg_read_path = "/Users/yxk/Desktop/核磁项目/ALL_sample/seg_pic/安芮716608_000008_seg.jpg"
seg_image = Image.open(jpg_seg_read_path)
seg_img_arr = np.array(seg_image)
print(seg_img_arr.shape)

print(np.sum(seg_img_arr[:,:,0] != seg_img_arr[:,:,2]))
print(np.sum(seg_img_arr[:,:,0] != seg_img_arr[:,:,1]))
print(np.sum(seg_img_arr[:,:,1] != seg_img_arr[:,:,2]))

plt.imshow(seg_img_arr,cmap='gray')
# seg_img_arr

img_arr = seg_img_arr[:,:,0]
print(img_arr.shape)


nonzero_pos = np.argwhere(img_arr > 0)
#####

left_value=min(nonzero_pos[:,1])
right_value=max(nonzero_pos[:,1])
upper_value = min(nonzero_pos[:,0])
lower_value= max(nonzero_pos[:,0])
print("left_value ={}".format(left_value))
print("right_value={}".format(right_value))
print("upper_value={}".format(upper_value))
print("lower_value={}".format(lower_value))

seg_img_arr[upper_value:lower_value,left_value,:]=[255,0,0] # 垂直线:x=200
seg_img_arr[upper_value:lower_value,right_value,:]=[255,0,0]# 垂直线:x=300
seg_img_arr[upper_value,left_value:right_value,:]=[255,0,0]# 水平线:x=100
seg_img_arr[lower_value,left_value:right_value,:]=[255,0,0] # 水平线:x=300


# seg_img_arr[100:300,224,:]=[255,0,0] # 垂直线:x=200
# seg_img_arr[100:300,279,:]=[0,255,0] # 垂直线:x=300
# seg_img_arr[200,200:300,:]=[0,0,255] # 垂直线:x=300
# seg_img_arr[239,200:300,:]=[0,0,255] # 垂直线:x=300
# # plt.imshow(seg_img_arr,cmap='gray')
plt.imshow(seg_img_arr,cmap='gray')

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值