机器学习——深度学习之编程工具、流行网络结构、卷积神经网络结构的应用

目录

 

一、编程工具

caffe实现LENET-5

二、流行的网络结构

1、VGGNET

2、Googlenet

​ 3、ResNet​

​ 三、卷积神经网络的应用

1、人脸识别

​ 2、人脸验证

3、人脸特征点检测

4、卷积神经网络压缩


一、编程工具

 caffe的优点:模型标准化,源代码是公开的,适用于图像识别,通过修改代码可以将其变成符合自己需求的模型

caffe的缺点:结构不够灵活,因为caffe就是为了卷积神经网络进行设计的

caffe实现LENET-5

 

 

 

 

 

二、流行的网络结构

1、VGGNET

2、Googlenet

 

3、ResNet

三、卷积神经网络的应用

 

1、人脸识别

 

 

2、人脸验证

 

 

3、人脸特征点检测

 

4、卷积神经网络压缩

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值