电阻距离------Resistance distance

本文围绕图论中简单连通图的电阻距离展开。介绍了其定义,即图的两顶点间电阻距离等于对应电网等效点间电阻。还阐述了电阻距离的特性、一般求和规则,以及它与图的生成树数、随机游走、欧几里得距离平方和斐波那契数的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原来的解释来自维基百科:https://en.wikipedia.org/wiki/Resistance_distance

在图论中,简单连通图G的两个顶点之间的电阻距离等于电网上两个等效点之间的电阻,电网被构造为与G相对应,每条边被一欧姆的电阻代替。它是图上的度量。

1.定义:

在图G上,两个顶点v_{i}和vj之间的电阻距离Ωi,j为:

其中+表示Moore–Penrose逆, L是G的拉普拉斯矩阵,|V|是G中的顶点数,Φ 是|V| × |V| 的全 1 的矩阵。

2.电阻距离特性

3.一般求和规则

对于任意N顶点的简单连通图G=(V,E)和任意N×N矩阵M:

根据这个广义和规则,可以根据M的选择导出许多关系。 值得注意的两个是:

 

其中 \lambda _{k}是拉普拉斯矩阵的非零特征值。这个无序的总和 

称为图的Kirchhoff index。 

4.与图的生成树数的关系

对于简单连通图G=(V,E),两个顶点之间的电阻距离可以表示为G的生成树集合T的函数,如下所示:

翻译这段话就是:

其中T’是图G’=(V,E+E,)的生成树的集合。换句话说,对于边(i,j)∈E,一对节点i和j之间的电阻距离是边 (i,j) 位于G的随机生成树中的概率。

5.与随机游走的关系

翻译就是:顶点u和u之间的阻力距离与u和v之间随机行走的通勤时间Cu成比例。通勤时间是从u开始、访问v并返回u的随机行走的预期步数。对于具有m条边的图,阻力距离和通勤时间相关为C'u,=2mDu,.l

6.作为欧几里得距离的平方

由于拉普拉斯算子L是对称的和半正定的,因此

表明电阻距离的平方根对应于 K 所跨越的空间中的欧几里得距离。 

7.与斐波那契数的联系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值