K-WL,K-FWL,set k-WL的区别:

本文详细介绍了K-WL、K-FWL和set k-WL算法在图同构测试中的过程。1-WL主要关注节点之间的边存在性,而K-WL则通过k元组的邻居更新节点标签,K-FWL进一步扩展了这一过程。set k-WL中,集合内的元素不允许重复,多集则允许元素重复出现。通过对元组、集合、列表和多集的比较,深入理解这些算法的工作原理。
摘要由CSDN通过智能技术生成

目录

目录

1.1-WL:

2.K-WL:

过程:

1.开始先选定图 G中的 k 元组(注意:元组()允许有重复元素,而且有序;集合{}不允许包含重复的元素,即集合中的元素是唯一的,集合是无序的)

2.然后就是寻找 k元组的邻居。

3.然后就要开始更新了:

3.K-FWL:

4.补充:

(1)set k-WL

(2)集合,元组,列表

(3)多集---multiset

5.总结:


1.1-WL:

k-GNN里定义

1-WL的过程: 

K-GNN定义:
Σ:表示标签集;$c_l^{(t)}(v)$应该就是表示节点 v在第 t次迭代时的标签。( l应该就是说打标签)

其中 HASH双射地将上述 pair映射到Σ中的唯一值,该值在以前的迭代中没有使用过。。为了检验两个图G和H的同构性,我们在两个图上“并行”运行上述算法。

  • 如果这两个图有不同数量的节点颜色为σ(σ in Σ),说明俩个图就不是同构的。
  • 如果两次迭代之间颜色的数量没有改变,即,前一次迭代和当前迭代的映射图中颜色的基数相等,那么算法终止。
  • 在最多max{|V(G)|, |V(H)|}次迭代后终止。

2.K-WL:

过程:

1.开始先选定图 G中的 k 元组(注意:元组()允许有重复元素,而且有序;集合{}不允许包含重复的元素,即集合中的元素是唯一的,集合是无序的

根据 k个节点可以构造的各种子图来制定初始标签集合,然后根据 k 元组对应的诱导子图从初始标签集合中赋予初始标签,对于k元组对应的诱导子图是同构的赋予相同的节点标签。不太确定:就像 k元组是三个一样的点,初始节点标签都一样,那么有自环的话,猜就按照三点之间均有连边来赋予标签。

2.然后就是寻找 k元组的邻居。

  • s代表原图 G中的 k元组,s带下标的都是一个一个的节点,可以是相同的点。

 

  • s的第j个邻居的定义 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值