目录
目录
1.开始先选定图 G中的 k 元组(注意:元组()允许有重复元素,而且有序;集合{}不允许包含重复的元素,即集合中的元素是唯一的,集合是无序的)
1.1-WL:
1-WL的过程:
Σ:表示标签集;应该就是表示节点 v在第 t次迭代时的标签。( l应该就是说打标签)
其中 HASH双射地将上述 pair映射到Σ中的唯一值,该值在以前的迭代中没有使用过。。为了检验两个图G和H的同构性,我们在两个图上“并行”运行上述算法。
- 如果这两个图有不同数量的节点颜色为σ(σ in Σ),说明俩个图就不是同构的。
- 如果两次迭代之间颜色的数量没有改变,即,前一次迭代和当前迭代的映射图中颜色的基数相等,那么算法终止。
- 在最多max{|V(G)|, |V(H)|}次迭代后终止。
2.K-WL:
过程:
1.开始先选定图 G中的 k 元组(注意:元组()允许有重复元素,而且有序;集合{}不允许包含重复的元素,即集合中的元素是唯一的,集合是无序的)
根据 k个节点可以构造的各种子图来制定初始标签集合,然后根据 k 元组对应的诱导子图从初始标签集合中赋予初始标签,对于k元组对应的诱导子图是同构的赋予相同的节点标签。不太确定:就像 k元组是三个一样的点,初始节点标签都一样,那么有自环的话,猜就按照三点之间均有连边来赋予标签。
2.然后就是寻找 k元组的邻居。
- s代表原图 G中的 k元组,s带下标的都是一个一个的节点,可以是相同的点。
- s的第j个邻居的定义