Attention机制

本文详细解析了Attention机制如何通过权重调整,使得Transformer等模型在翻译任务中突破传统限制,实现参数减少、速度加快和效果优化。重点介绍了自注意力和上下文理解的应用,并以北京冬奥会翻译为例阐述其核心思想。
摘要由CSDN通过智能技术生成

Attention机制笔记

attention就是权重

Transformer BERT GPT等AI模型全是在此基础上发展来的

以电脑翻译Beijing 2022 Winter Games为例:

单个Games表示游戏

联系Beijing时,Games是比赛

综合Winter和2022时,可以翻译为北京2022冬奥会

RNN网络的每层结果取决于这一层的输入和上一层的输出,两个RNN组合就形成encoder-decoder模型,先编码再解码,但这种的encoder每次的结果都是同样长度(类似于形成hsah的MD,SHA算法)在这里插入图片描述

attention就是每个时间得到不同的中间值,通过训练可得到最好的网络结构,打破了只能使用encoder形成单一向量的限制。将注意力改到对当前单词翻译最重要的信息上,提高效果。

其实就是对输入打分

self-attention就是没有顺序的打分(不仅仅以Games为主体,其他为辅),这样就串入了上下文信息。就像出门照镜子,自己看看可以提高哪里的颜值(就是提高哪里的权重)
在这里插入图片描述

我们的视觉系统也是attention系统,我们总是把注意力放在重要的信息上,快速获得最有用的信息。

总结:三大优点

  • 参数更少
  • 速度更快
  • 效果更好

点**

  • 参数更少
  • 速度更快
  • 效果更好

**核心思想:通过加权求和结合对context的理解,在不同等上下文下专注不同的信息。**所以attention可以在NLP、图像、推荐里大展拳脚。

参考B站UP梗直哥丶
https://www.bilibili.com/video/BV1xS4y1k7tn?spm_id_from=333.999.0.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值