Pytorch——常用损失函数详解

损失函数总结

首先直接贴上个人看过比较好的一些的解析:

很全的Pytorch loss函数汇总:


部分特殊损失函数详解

1. 余弦损失函数 torch.nn.CosineEmbeddingLoss

  • 余弦损失函数,常常用于评估两个向量的相似性,两个向量的余弦值越高,则相似性越高。

在这里插入图片描述

  • x:包括x1x2,即需要计算相似度的predictionGT
  • y:相当于人为给定的flag,决定按哪种方式计算得到loss的结果。

使用说明:

  • 如果需要约束使x1和x2尽可能的相似,那么就使用y=1predictionGT完全一致时,loss为0,反之亦然。

使用示例:

input1 = torch.randn(100, 128)
input2 = torch.randn(100, 128)
cos = nn.CosineEmbeddingLoss(reduction='mean')

loss_flag = torch.ones([100]) # 需要初始化一个N维的1或-1
output = cos(input1, input2, loss_flag)
print(output)	# tensor(1.0003)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值