在残差网络(ResNet)中,如何避免学习到原始映射

在残差网络(ResNet)中,残差学习的核心思想是让网络学习输入与输出之间的残差,而不是直接学习输入映射到输出的函数。为了保证学习到的是残差而不是原始映射与原输入的简单相加,即:

如何避免学习到原始映射

  • 默认初始状态
    在初始化时,主路径中的卷积核和其他参数通常会初始化为接近于0的值,这意味着在网络训练初期,F(x)的值接近于0。这使得在初始时刻,残差块的输出几乎等于输入 x,即 H(x)≈x。随着训练的进行,网络逐渐学习到输入的残差,而非直接复制输入。
# 对网络中的所有模块进行初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):  # 如果是卷积层
                # 使用Kaiming正态分布初始化卷积层权重  用 Kaiming 正态分布(通常是以 0 为均值的高斯分布)来初始化权重
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  • 跳跃连接
    跳跃连接保证了即使 F(x)学到的内容很少或完全为零,残差块的输出 H(x) 仍然可以有效地传递输入 x。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值