基于候选区域的目标检测器总结(RCNN,FastRCNN,FasterRCNN)

本文总结了基于候选区域的目标检测模型,包括RCNN、FastRCNN和FasterRCNN。RCNN多阶段训练涉及CNN微调、SVM训练和边界框回归;FastRCNN通过多任务损失和ROI池化层优化效率;FasterRCNN引入RPN网络,直接生成候选区域,提高了速度。文章还探讨了这些模型的训练、测试过程和优缺点。
摘要由CSDN通过智能技术生成

这段时间了解了一下深度学习中的目标检测常用的模型,为以后学习打一打基础,其中基于候选区域的目标检测经典模型必属RCNN,FastRCNN,FasterRCNN,网上有很多大牛的博客讲的都很详细,大家可以去查找,我就从者三个模型的训练和测试过程方面简单的总结一下。小白一枚,不足之处多多指正


RCNN

RCNN是一个多阶段训练模型,包括生成候选区域,CNN微调,SVM训练和边界框回归等多个步骤。
这里写图片描述

训练过程

这里写图片描述
1. 使用ILSCRC2012训练集对CNN Alexnet模型进行预训练
2. 在验证集上使用SelectResearch对每张图片上生成2000个左右的候选的区域(IoU>0.5的标记正样本,IoU<0.5的标记负样本),将候选框大小调整为224*224大小
3. 将生成的候选区域送入预训练完成的Alexnet网络中进行微调,微调时使用SGD,并将学习率设置为预训练时的1/10(每一个batch中有大约128个候选框,其中正样本32个,负样本96个)
4. 微调完成后,在进行SVM之前需要重新定义正负样本,其中IoU<0.3的为背景负样本,正样本用GT box来表示
5. 将重新定义的候选框从Alexnet中得到4096维度的特征向量,进行SVM训练,为每一个类别训练一个二分类器(目标,背景)
6. 进行边界框回归,在选择线性回归器的样本时使用Hard negative mining method,就是选择假样本中代表性比较高的样本,即选择IoU>0.6的候选框进行回归训练。
具体做法:假如下图中的蓝色box用P来表示,P=(Px,Py,Pw,Ph),这四个值分别表示这个box的中心点横坐标,中心点纵坐标,box宽度以及box高度.红色框为目标的真实box,设为G,G=(Gx,Gy,Gw,Gh),每个元素的含义和P中相同,现在的目的就是想学习到一种变换,这个变换可以将P映射到G.
这里写图片描述
如何对这个变换进行建模? 作者给出了一种变换关系如下图所示:
这里写图片描述这里写图片描述
其中,Φ5(P)是CNN网络中Pool5计算出的特征,,w_{x,y,h,w}为待学习的回归器参数。

测试过程

  1. 测试集上的图片使用SelectResearch生成2000个大小的候选区域,并调整到224*224大小
  2. 使用CNN计算每个特征图的特征向量
  3. 使用多个SV
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值