数学知识 快速幂

快速幂

给定 nai,bi,pi,对于每组数据,求出 a i b i   m o d   p i a_i^{bi}~mod~p_i aibi mod pi 的值。

输入格式
第一行包含整数 n

接下来 n 行,每行包含三个整数 ai,bi,pi

输出格式
对于每组数据,输出一个结果,表示 a i b i   m o d   p i a_i^{bi}~mod~p_i aibi mod pi 的值。

每个结果占一行。

数据范围
1≤ n ≤100000,
1≤ ai,bi,pi ≤2×109
输入样例:

2
3 2 5
4 3 9

输出样例:

4
1

快速幂:快速求出 a b   m o d   p a^b~mod~p ab mod p 的结果(时间复杂度 O(logb))
基本思路:

  1. 首先预处理出 a 2 0 , a 2 1 , a 2 2 , … , a 2 l o g b . a^{2^0},a^{2^1},a^{2^2},\ldots,a^{2^{logb}}. a20,a21,a22,,a2logb.这b个数。
  2. 想办法用 1 求出的数字表示 a b a^b ab 。例如: a b = a 2 i ∗ a 2 j ∗ a 2 k . . . = a 2 i + 2 j + 2 k . . . a^b=a^{2^i}*a^{2^j}*a^{2^k}...=a^{{2^i}+{2^j}+{2^k}...} ab=a2ia2ja2k...=a2i+2j+2k... 上述式子可以用二进制优化,即用二进制表示出来。

eg: 4 5 = 4 ( 101 ) 2 = 4 2 0 + 2 2 = 4 2 0 ∗ 4 2 2 = 4 ∗ 256 4^5=4^{(101)_2}=4^{2^0+2^2}=4^{2^0}*4^{2^2}=4*256 45=4(101)2=420+22=420422=4256

#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
typedef long long int LL;
LL n,a,b,p;
LL quick_pow(LL a,LL b,LL p)
{
    LL res=1;
    while(b)
    {
        int k=b&1;
        if(k) res=res*a%p;
        a=a*a%p; //预处理a
        b=b>>1;
    }
    return res;
}
int main()
{
    cin>>n;
    while(n--)
    {
        cin>>a>>b>>p;
        cout<<quick_pow(a,b,p)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值