PyTorch入门笔记3:TensorBoard的使用

PyTorch入门笔记3:TensorBoard的使用

首先安装TensorBoard,在Pycharm终端,或者在Anaconda Promat中
pip install tensorboard

一、 SummaryWriter

from torch.utils.tensorboard import SummaryWriter
在这里插入图片描述

从函数介绍可知:这个类主要是将事件文件写入 log_dir文件夹,可以被TensorBoard解析。
要用到其成员函数 add_scalar()

def add_scalar(
        self,
        tag,
        scalar_value,
        global_step=None,
        walltime=None,
        new_style=False,
        double_precision=False,
    )

1.tag: 图表的 title

2.scalar_value:保存的数值,即对应y轴

3.global_step: 步长,即对应x轴

尝试一下:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
# writer.add_image()
for i in range(100):
    writer.add_scalar("y=x", i, i)
writer.close()

结果:
在工程所在目录生成了 logs文件夹,并生成了事件文件。
在这里插入图片描述再在pycharm里的终端输入
tensorboard --logdir=logs查看事件文件
在这里插入图片描述
点击最后的链接即可看到图表了
在这里插入图片描述

可通过参数 --port=xx 指定端口,以防止端口冲突(多用户使用同一服务器进行训练时)

tensorboard --logdir=logs --port=6007
注:

这个命令会打开 logdir文件夹下的所有事件文件。
图表以 tag 作为区分,可向一个 tag多次写入数据,会自动进行拟合。

二、add_image()

首先下载一下测试数据集,链接:
链接:https://pan.baidu.com/s/12H_UMoCLGcIYRSp8qN0FLA
提取码:7zc6
下载好后解压重命名为 testdata,放到工程目录下:

在这里插入图片描述

再使用成员函数 add_image()
在这里插入图片描述

可以看到使用此函数所需要提供的参数,这里注意,img_tensor是图像数据,对其数据类型有所要求,必须是torch.Tensor、numpy.array或者字符串。
这里可以利用 PIL.image.open() 函数读取图片,然后用 numpy.array()对PIL图片进行数据类型转换。

测试代码:

from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import numpy as np

writer = SummaryWriter("logs")
image_path = "testdata/train/ants_image/0013035.jpg"
img = Image.open(image_path)
img_array = np.array(img)

writer.add_image("test", img_array,1, dataformats='HWC')

for i in range(100):
    writer.add_scalar("y=3x", 5*i, 2*i)
writer.close()

执行后,并打开TensorBoard,点击IMAGES,可以看到添加的图片:
在这里插入图片描述

可以通过修改step来显示每一步的输入图片数据:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>