【扩散模型--医学影像分割1】

本文探讨了扩散模型在医学图像分割中的应用,如brainSPADE的生成模型和DARL的对抗表示学习,强调了这些模型如何通过合成标记数据减少对像素注释的依赖。CIMD框架和PatchDDM则展示了在处理大型3D体积和计算效率方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀 作者 :“码上有前”
🚀 文章简介 :医学影像分割
🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬

请添加图片描述

图像分割

图像分割是计算机视觉中的一项重要任务,它通过将图像分解成多个有意义的图像片段来简化图像的复杂性[113,114]。

具体来说,它通过提供解剖学相关领域的有益信息来促进医学分析。然而,深度学习模型通常需要大量不同的像素注释训练数据,以产生可推广的结果[115,116]。尽管如此,由于时间、成本和所需专业知识的限制,医学图像分割可使用的图像和标签数量受到限制[117,118,119]。

为此,扩散模型作为一种很有前途的方法出现在图像分割研究中,它综合了标记数据,消除了对像素注释数据的需要。

brainSPADE

brainSPADE[61]提出了一种生成模型,用于合成标记的脑MRI图像,可用于训练分割模型。brainSPADE由标签生成器图像生成器子模型组成。前者负责创建合成分割图,后者负责根据生成的标签合成图像。在标签生成器中,输入分割映射首先在训练期间使用空间VAE编码器进行编码,并构建一个潜在的空间。然后,压缩后的潜在代码通过ldm进行扩散和去噪[120],并产生一个有效的潜在空间,其中忽略不可察觉的细节,更多地突出语义信息。

vae - gan

空间VAE解码器通过隐空间构造人工分割图。在图像生成器中,Fernandez等人[61]利用vae - gan模型SPADE[121],从输入任意样式中构建样式潜在空间,并与人工分割映射一起对输出图像进行解码。利用nnU-Net[122]来检查性能。结果表明,模型在合成数据上的训练结果与在事实数据上的训练结果相当,两者的结合显著提高了模型的效果。

DARL

Kim等[62]提出了一种新的自监督血管分割扩散对抗表示学习(diffusion adversarial representation learning, DARL)模型,旨在诊断血管疾病。

在提出的DARL模型中有两个主要模块:扩散模块,用于学习背景图像分布;生成模块,用于使用可切换的SPADE算法生成血管分割掩模或合成血管图[121]。图9说明了应用此方法的两种方式。在路径(A)中,将真实的噪声血管造影图像x A ta输入到模型中,产生分割掩码dsv,关闭SPADE开关。在路径(B)中,一个真实的噪声背景图像xB被输入到模型中,SPADE变得活跃并接收一个类似血管的分形掩模,生成一个合成血管成像图像x a。然后,通过将生成的合成血管造影图像放入路径(A),形成一个循环,这有助于学习血管信息。

此外,在推理过程中,一步执行路径(A),其中模型仅将带噪声的血管造影图像输入到模型中产生掩模。结果验证了该方法与SOTA非/自监督学习方法相比的泛化、鲁棒性和优越性。

在这里插入图片描述
图9:DARL概述[62]。路径(A)是将真实的噪声血管造影图像通过模型馈送,生成分割图。路径(B)结合了将噪声背景图像与血管样分形掩膜一起通过模型来合成合成血管造影图像。

CIMD框架

除了前面提到的研究,Rahman等[123]引入了CIMD框架,这是一种基于单一概率扩散的模型,用于解决模棱两可的医学图像分割任务。确定性医学图像分割框架(如[119,124])产生像素不确定性,但结果并不一致[125]。**此外,从医学的角度来看,医学图像分割不应该仅仅被认为是一个逐像素的任务。**在临床实践中,从医学图像中分析器官或其他结构并不是一个确定的像素过程,而是对整个图像进行评估的基础,或者在较小的范围内评估相邻像素的多样性。扩散模型中的随机采样步骤可以产生多种和多个掩模。在训练步骤中,CIMD[123]利用连接到原始图像的噪声分割真值掩模来阻碍分割任务中扩散过程的常规使用,从而产生更有弹性的结果,而不是任意掩模。CIMD的表现优于Rahman等人[123]在他们的工作中引入的概率U-Net模型[126],该模型以不同的方式调查了三个数据集(一个私有数据集和两个公开数据集)[127,128]。

PatchDDM

Bieder等[129]提出了一种内存高效的基于补丁的扩散模型PatchDDM,该模型可应用于大型3D体积,适用于医疗任务。作者在BraTS2020[83,82]数据集的肿瘤分割任务上评估了PatchDDM,并证明它可以生成有意义的三维分割,同时比传统的扩散模型需要更少的计算资源。

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上有前

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值