深度学习应用
文章平均质量分 80
???/cy
算法工程师,日常分享多模态领域的前沿成果,与自己工程经验的总结,问道~大模型
展开
-
LPRNet: 端到端的车牌识别
LPRNet是2018.06 27 被上传到arxiv上的LPRNet 是第一个实时车牌检测算法中不需要RNN的算法。LPRNet 是一个端到端的,不需要提前进行char分割的车牌识别算法。LPRNet 因为网络结构很小,所以速度很快,在英伟达1080上面 3ms/车牌。在Intel i7-6700K CPU 上1.3ms。LPRNet 前向计算量 0.34 GFLops。原创 2024-09-02 15:35:49 · 858 阅读 · 0 评论 -
异常检测 | Anomaly Detection via Reverse Distillation from One-Class Embedding |很不错的方法,可以用来找出特例!!!
本文提出了一种新的异常检测方法,名为“反向蒸馏”。该方法利用预训练的教师模型提取图像特征,并将其蒸馏到学生解码器中。学生解码器的目标是重建教师模型的多尺度特征,但由于学生模型只学习正常模式,因此无法重建异常特征,从而实现异常检测。主要贡献反向蒸馏框架: 教师模型为编码器,学生模型为解码器,打破传统蒸馏模型的结构限制,提高模型对异常的区分能力。一类别瓶颈嵌入模块: 将教师模型的高维特征压缩到低维空间,有效抑制异常特征的传播,增强异常检测效果。实验结果。原创 2024-06-15 21:36:33 · 1274 阅读 · 0 评论 -
WiSE-FT | zero-shot模型的微调 | 同时保持原始模型的鲁棒性
WiSE-FT 是一种简单有效的微调方法,可以显著提高零样本模型对分布偏移的鲁棒性,同时保持或提高目标分布上的准确性。原创 2024-06-12 11:38:54 · 946 阅读 · 0 评论 -
端到端目标检测 | 从DETR 到 GroundingDINO | 干货中的战斗机
多模态目标检测模型是如何训练的,深入浅出,从DETR 讲起 到GroundingDINO。原创 2024-05-29 19:01:35 · 1579 阅读 · 0 评论 -
深度学习基础知识干货 | Group Convolution / Depthwise Convolution 轻量模型的必杀卷积
轻量化模型 装备 的卷积原创 2023-11-02 14:42:16 · 146 阅读 · 1 评论 -
yolov7示例 | 如何写一个剪枝代码?
剪枝有哪些方法首先, 选择剪枝的颗粒度:规律 or 不规则然后, 选择在哪里剪枝:权重 or 结构其次,选择剪枝程度:计算量减少5倍?yolov7代码中的train.pytest.py要了解因为我们剪枝进行finetune的时候需要train()这个函数,prune的时候需要test()这个函数。原创 2024-04-03 14:52:09 · 1412 阅读 · 3 评论 -
pytorch训练流程 | 简单示例
【代码】pytorch训练流程 | 简单示例。原创 2024-04-03 11:53:56 · 398 阅读 · 0 评论 -
yolov7代码 | model.named_models
了解model.named_models,为剪枝做准备。剪枝有一些层如果你不想剪掉,那就用需要你会用 model.named_models功能。先放一段控制剪枝的代码,感受一下ignored_layers = [] # 这些层不剪枝。原创 2024-04-02 20:05:03 · 346 阅读 · 0 评论 -
yolov5,7,8,9 官方模型对比
实验后续更新。原创 2024-03-21 15:31:27 · 4648 阅读 · 1 评论