yolov5,7,8,9 官方模型对比

1. 官方指标

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/daf365a61f494658b1dd391c248cdef2.png
在这里插入图片描述

  • yolov5,v8对比
    • mAP同等级别时v8的模型和计算量大小 比同等级的v5会更
  • 在自定义的数据集上,经过实验,其实,yolov5, yolov7的精度表现是最好的,yolov8的识别差强人意。
  • yolov5, v7 的精度差不多,但v7的模型和计算量都相对较少,推荐yolov7
  • yolov9,也对比了一下,并没有yolov5,7的泛化能力那么强,还是推荐yolov7

2. 实测实验结果

  • 私人数据集在这里插入图片描述

3. v5,7,8,9模型在私人数据集上的区别

其实每一个模型都有自己的长处,有的模型非常自信(比如v5,v7)

### YOLOv7YOLOv8模型对比 #### 特征改进 YOLOv8引入了更先进的特征提取机制,优化了网络结构设计。相较于YOLOv7YOLOv8采用了更加高效的CSP(跨阶段部分连接)模块变体,进一步提升了特征表达能力[^1]。 #### 性能提升 在性能方面,YOLOv8实现了显著进步,在多个公开数据集上均获得了更高的mAP(平均精度均值)。具体而言,对于COCO测试-dev集合,YOLOv8达到了50.9% mAP@0.5:0.95的成绩,而YOLOv7则为49.2%。 #### 准确度增强 得益于架构上的革新以及训练策略的调整,YOLOv8不仅提高了目标检测的整体准确性,而且特别增强了小物体识别的效果。实验结果显示,针对面积小于32×32像素的小型目标,YOLOv8相比前代产品有明显改善。 #### 速度优化 为了满足实时应用场景的需求,YOLOv8着重进行了推理效率方面的优化工作。通过采用轻量化骨干网和其他技术手段,该版本能够在保持较高检测质量的同时大幅缩短处理时间。例如,在配备NVIDIA RTX 3090显卡的情况下,YOLOv8可以实现每秒超过160帧的速度表现,远超YOLOv7约120 FPS的表现。 ```python import torch from yolov7 import YOLOv7 from yolov8 import YOLOv8 device = 'cuda' if torch.cuda.is_available() else 'cpu' model_v7 = YOLOv7().to(device) model_v8 = YOLOv8().to(device) input_tensor = torch.randn((1, 3, 640, 640)).to(device) output_v7 = model_v7(input_tensor) output_v8 = model_v8(input_tensor) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值