多模态大模型 | GroundingDINO 论文总结

🐧大模型系列篇章

💖 多模态大模型 🔎 GroundingDINO 论文总结
💖 端到端目标检测 🔎 从DETR 到 GroundingDINO
💖 多模态大模型 👉 CLIP论文总结
💖 多模态大模型 👉 EVA-CLIP
💚 生成模型 👉 从 VAE 到 Diffusion Model (上)
💚 生成模型 👉 从 VAE 到 Diffusion Model (下)
💧 天气大模型

欢迎订阅专栏,第一时间掌握最新科技
专栏链接

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/0df070b3703f43ffbb7bb23c11a3f7fc.png
论文:https://arxiv.org/pdf/2303.05499
题目:Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

从题目就可以知道Grounding DINO 的内容了:introducing language to a closed-set detector for open-set concept generalization.

  • 如何高效的融合图像,文本两种模态?
    作者把 闭集的目标检测器 分成了三个阶段
    1. 颈部阶段(Neck Module)2. 查询初始化阶段 3. 头部阶段(Head Phase)

同时提出了一个紧凑的融合方法 (a tight fusion solution),包括一个特征增强(feature enchancer),一个语言指导问答选择 (a language-guided query selection),一个跨模态解码器 (a cross-modality decoder for cross-modality fusion).

Grounding DINO 如何训练
端到端目标检测 | 从DETR 到 GroundingDINO

1. Introduction

先来认识一下开放集目标检测 open-set object detection: To detect arbitrary objects specified by human langugage inputs.
作为一个通用的开放集目标检测器 非常有潜力,比如,它可以与 生成模型 (generative models) 结合,去实现 图像编辑 (image editing)

The key to open-set detection is introducing langugage for unseen object gerenalization

  • GLIP: 它重新将目标检测问题解释为短语定位任务,并引入了目标区域与语言短语之间的对比训练

    • 将目标检测任务重新解释为短语定位任务。这意味着不再简单地识别物体,而是将物体与语言描述的短语相关联。这样做的好处是,可以更直接地从语言描述中理解图像中的内容,同时也为图像理解和自然语言处理之间的融合提供了一种框架。

    • 引入目标区域与语言短语之间的对比训练:对比训练是一种机器学习中常用的技术,旨在通过比较不同样本之间的相似性来学习表示。GLIP利用对比训练的思想,将目标区域(即图像中的物体区域)与对应的语言短语进行比较训练。通过这种方式,模型学习到了如何将语言描述与图像中的物体区域相关联,从而提高了模型在短语定位任务上的性能。

    • 在数据集上展现出色的灵活性: GLIP表现出了对于不同类型和特征的数据集具有出色的适应能力。这意味着即使在处理各种不同结构和特性的数据时,GLIP模型也能够保持良好的性能。

    • 在闭集和开集检测方面表现出了显著的性能: GLIP在闭集和开集检测任务中都取得了显著的性能表现。闭集检测是指模型只能识别训练集中存在的类别,而开集检测则是指模型需要处理未见过的类别。GLIP在两种情况下都取得了令人瞩目的结果,表明其在处理各种检测任务时的通用性和鲁棒性。

  • Grounding DINO相比于GLIP有几个优势

    • 首先,基于Transformer的架构类似于语言模型,这使得它更容易处理图像和语言数据。例如,由于所有图像和语言分支都是基于Transformers构建的,因此我们可以轻松地在其整个流程中融合跨模态特征。
    • 其次,基于Transformer的检测器已经证明了利用大规模数据集的卓越能力。
    • 最后,作为一个类似于DETR的模型,DINO可以在不使用任何硬编码模块(如NMS,即非最大抑制)的情况下进行端到端优化,这极大地简化了整体基础模型的设计。

1.1 如何通过在闭集检测器的基础上引入语言感知机制,将其扩展为开放集检测器

如何通过在闭集检测器的基础上引入语言感知机制,将其扩展为开放集检测器。这种扩展的关键是使用语言信息来使模型能够识别新的类别,并通过对比损失来确保不同模态(图像和语言)的信息在模型中得到合适的融合。

现有的开放集检测器通常是通过在 语言信息的基础上 将闭集检测器扩展到开放集场景中来开发的。一般来说,闭集检测器通常由三个重要模块组成:用于 特征提取的骨干网络、用于 特征增强的颈部网络以及用于 区域细化(或框预测)的头部网络
通过 学习与语言相关的区域嵌入(language-aware region embeddings),闭集检测器可以被推广用于检测新的对象,模型可以将图像中的每个区域(可能包含对象)与语言描述中的新类别相关联。在这种方法中,图像中的每个区域都会被嵌入到一个与语言相关的语义空间中。这个语义空间是基于语言定义的,因此它能够将 图像中的视

### 关于 GroundingDINO 的使用教程 #### 安装与配置过程 为了开始使用 GroundingDINO,需先克隆该项目仓库至本地环境中。命令如下所示: ```bash git clone https://github.com/IDEA-Research/GroundingDINO.git ``` 进入 GroundingDINO 文件夹并创建名为 `weights` 的新目录用于存储模型权重文件[^3]。 接着,在当前目录下安装所需的依赖项。这一步骤通常通过执行位于项目根目录下的 `requirements.txt` 来完成。可以利用 pip 工具来自动化这一流程: ```bash pip install -r requirements.txt ``` #### 启动文件概述 GroundingDINO 项目的启动主要围绕几个核心组件展开。其中,`demo/` 目录包含了演示脚本,比如 `test_ap_on_coco.py` 可供开发者快速上手尝试该框架的功能特性;而 `groundingdino/config/` 下则放置着诸如 `GroundingDINO_SwinT_OGC.py` 这样的配置文件,定义了不同实验设置的具体参数[^1]。 对于想要深入理解或调整算法行为的研究人员来说,熟悉这些配置选项是非常重要的。此外,预训练好的模型权重被保存在 `weights/` 文件夹内,例如 `groundingdino_swint_ogc.pth` 就是一个典型的例子,它承载了经过大量数据集训练后的网络参数信息。 #### 使用指南 一旦完成了上述准备工作之后,就可以着手编写自己的应用逻辑或者直接调用现成的例子来进行功能验证。具体而言,可以通过修改 `demo/test_ap_on_coco.py` 中的内容来自定义输入源以及处理方式,进而实现特定场景下的目标检测任务。 #### 相关研究进展 有关 GroundingDINO 背后的理论基础及其创新之处可以在关联文章中找到详细介绍。这部分内容涵盖了多个方面,包括但不限于如何有效地融合视觉特征与自然语言描述之间的联系等前沿话题[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值