生成模型 | 从 VAE 到 Diffusion Model (下)

🐧大模型系列篇章

💖 多模态大模型 🔎 GroundingDINO 论文总结
💖 端到端目标检测 🔎 从DETR 到 GroundingDINO
💖 多模态大模型 👉 CLIP论文总结
💖 多模态大模型 👉 EVA-CLIP
💚 生成模型 👉 从 VAE 到 Diffusion Model (上)
💚 生成模型 👉 从 VAE 到 Diffusion Model (下)
💧 天气大模型

欢迎订阅专栏,第一时间掌握最新科技
专栏链接

在这里插入图片描述

生成模型 | 从 VAE 到 Diffusion Model (上)的链接请点击下方蓝色字体: 上部分主要介绍了,GAN, AE, VAE, VQ-VAE, DALL-E

生成模型 | 从 VAE 到 Diffusion Model (上)

我们先来看一下生成模型现在的能力

他能干什么:文生图,生成原有图像之外的新内容,修改图片,生成图片的变体

生成模型现在的能力示例
文生图在这里插入图片描述
生成原有图像之外的新内容在这里插入图片描述
修改图片在这里插入图片描述
生成图片的变体在这里插入图片描述
不同公司的生成式模型示例
之前的生成模型在这里插入图片描述
OpenAI在这里插入图片描述
stability ai在这里插入图片描述
Midjounery在这里插入图片描述

一,扩散模型

在训练的时候有两个过程:

  • 前向过程: 把 噪声 加到图片里面去, 直到图片变成一个纯纯的高斯分布的这么一个噪声。

  • 反向过程: 把高斯分布的这么一个噪声 一步步 的去噪,生成图片。

(扩散模型:是一个概率分布模型,他生成这个图片,是从分布里去采样的,所以他的多样性非常好,但是保真度比不过GAN)

数学上,简洁美观,正向,逆向都是高斯分布,所以能做很多推理证明。

如果我现在的输入是一个随机噪声Z(和GAN里面那个一样),找到一种方式,把噪声一点点恢复到最初的图片,就可以做图像生成了。通过这个反向过程来生成图像。

  • 我们随机抽样一个噪声,比如说Xt,那我就训练一个模型把它从Xt 还原回 Xt-1,一步一步这样倒退回来。
  • 抽样生成很多次,训练比较贵,推理也是最慢的一个。
  • 最原始的扩散模型T是选择了1000个step,如果你随机选择一个噪声,你要往前推1000步,一千次forword 一点一点把图像恢复回来。开销很大。
    在这里插入图片描述
    在这里插入图片描述

反向过程

这个reverse 反向模型长什么样呢?每一步的输入输出的图片大小保持不变,在这个情况下,diffusion model采取了一个非常常见的一个模型结构U-NET

在这里插入图片描述

U-NET

U-NET: 他的输入输出的特征图大小一样,我们用u-net来做这个噪声的预测

  • u-net就是一个CNN ,一点点把图像压小,然后解码一点点把图片恢复回来,前后两个图片尺寸大小是一样的。
  • 为了让恢复做的更好,还有一些skip connection, 这样能恢复一些细节。
  • 后来又对网络结构有了一些改进,比如加了attention,让模型生成变得更好。
  • 这里不一定要用u-net模型,但是大部分扩散网络都用了u-net

在这里插入图片描述

二,扩散模型的发展历程

1. Denoising Diffusion Probabilistic Model (DDPM) (2020.06)

贡献一

  • 以前大家都用Xt预测Xt-1,这让有点难,取而代之去预测这个噪声。
  • 同时这里面也加了time embedding,告诉模型这是我们现在走哪一步了。现在这个输出我是想要糙一点的还是想要细致一点的
    • 我们希望u-net在刚开始的反向过程中,可以生成物体大概的轮廓,一些很粗糙的图像,不需要很清晰,不需要很写实
    • 随着扩散模型往前走,我们希望模型还原图片的细节信息,比如物体的边边角角,物体细小的特征,让图片变得逼真。

目标函数

训练这个简单的目标函数,我们就把DDPM这个网络训练起来了。
在这里插入图片描述

贡献二

  • 如果你要预测一个正态分布呢,其实你只要学习他的均值和方差,就可以了
  • 作者这里发现,其实你只要去学均值就可以了,方差都不用学,方差变成一个常数,效果就很好了
  • DDPM降低了模型优化的难度,第一次能够用扩散模型,能够生成很好的图片,是扩散模型的开山之作

VAE 与 Diffusion Model的相似之处

  1. 编码器解码器的结构
  2. 对于扩散模型,每一步的中间过程,和刚开始的输入都是同样维度大小。对VAE来说,中间特征bottleneck 要比输入小很多
  3. 对扩散模型来说有步数的概念。从随机噪声开始要经过很多很多步才能生成一个图片,所以它有time embedding的概念。而且在所有的time step里所有的模型都是共享参数
  • 换一个角度看VAE 和 Diffusion Model
    • VAE 先用一个ENCODER, 把Image 变成 Latent presentation, 然后用一个Decoder 把 这个特征还原回图片。
    • 扩散模型,你可以把这个前向加噪的过程看成一个ENCODER, 这个encoder不是神经网络,不是学习得来的,而是固定好的,是人设计的。一直加噪,得到这么一个纯粹的噪声图片就像是人类看不懂的Latent presentation。然后把噪声还原的过程就是Decoder的过程。

在这里插入图片描述

2. Improved Denoising Diffusion Probabilistic Model (Improved DDPM) (2021.02)(OpenAI)

  • 之前的DDPM里面说,正态分布的方差呢,不用学,OpenAI觉得要是学了可能会更好,后来取样,生成的效果都不错
  • 更改了如何添加噪声的schedule,从一个线性的schedule, 变成了一个余弦的schedule。
  • 模型越大,图像生成更好。

3. Diffusion Model Beats GAN(2021.05) (OpenAI)

  • 把模型加大加宽,增加自注意力头的数量,变复杂
  • 新的归一化的方式,根据步数做自适应的归一化
  • classifier guidance的方法,引导模型做采样和生成,让生成的图片更加的逼真,同时加速了反向采样的速度。
    • 之前的扩散模型在计算FID等数值的时候,与GAN相比不具有竞争性,classifier guidance的方法, 提高了FID, INCEPTION SCORE。同时也提升了采样生成的速度。
    • classifier guided diffusion: 在训练模型的同时,再训练一个图像分类器,
      • 分类器的作用:当我有一个图片Xt,我把它扔给图片分类器,看他分类对不对,我就能算一个交叉熵目标函数,对应的呢就能得到一些 梯度,然后我用这个梯度来帮助模型进行采样和图片的生成。这里的梯度暗含了图片里面的物体,告诉U-NET我现在要生成的图片呢,要看起来更像某一类物体。
    • 在classifier guided diffusion 之后生成的图片逼真了很多
    • 这篇论文第一次把diffusion model的FID等评价指标得分打败了GAN
    • 相当于牺牲了一部分多样性,增加了 写实性。
  • 除了用classifier 当作指导信号,还可以用什么当作指导信号?除了梯度,还可以用 clip, image, text 做引导
  • 所有的这个方法有一个缺陷:需要用另外一个模型来做这个引导
    在这里插入图片描述

4. GLIDE(2021.) (OpenAI)

  • classifier free guidance
    • 不想要这些classifier了,能不能找到一种指导信号,让模型生成更好呢?
    • 让模型生成两个输出,一个是给定条件生成一个输出,另一个是不给条件生成一个输出。
      • 比如,给定的条件是text,生成一个输出,然后随机的不给条件,生成输出。假设我们现在有一个空间,刚才生成的图片分别是有条件生成的图片和没用条件生成图,那我们现在知道,有一个方向 让我们从无条件的输出,成为有条件得到的这个输出,通过训练,我们就会知道他们之间的差距大概是多少。最后在反向扩散图像生成的时候呢,我们能做出一个合理的推测,能从一个没有条件生成的输出,变成一个有条件生成的输出。这样就摆脱了分类器的限制。
    • 训练很贵,训练的时候生成两个输出。但是好用。是一个非常重要的技巧,从GLIDE, DALL-E.2 到Imagen都说这是一个非常好用的技巧。

在前面的所有发展历程的积累下,GLIDE模型是一个很好的根据文本生成图片的扩散模型了。只用了3.5B的参数,就直逼之前的DALL-E模型(12B参数)。所以OpenAI就不顺着之前DALL-E, 之前 VQ-VAE的方向去做了,就用扩散模型来做了。

5. DALL-E-2(2021.05) (OpenAI)

任务:给定文本去生成图像:

1. 先训练好一个clip模型, 找到图像和文本对之间的相连关系后
2. 然后把text变成text embedding, 训练一个prior 模型, 把text embedding 变成 image embedding
3. 然后用一个 decoder 把 image embedding 还原成图像

DALL-E2这种显示的生成图像特征的 提高了图片的 多样性, 他们这种基于 扩散模型 的解码器,能够根据给定的图片特征,生成不同的图片,同时保持语义信息和风格都是比较接近的,只是细节不一样。
因为这个是通过文本生成图像,所以很容易的通过clip做为中间的桥梁,从而达到这种图片编辑的功能。

在这里插入图片描述

  • 给定一个文本y, 恢复图像X。 他可以写成给定一个文本y, 然后生成图片对应的特征Zi,然后根据chain rule,就可以写成最后的式子了。’
  • 给定文本生成图片特征,给定y,Zi之后,用图像embedding去生成图像X就是decoder
    在这里插入图片描述

decoder

这里的decoder就是GLIDE模型的变体,他用了clip来作为guidance,也用了classifier-free guidance,能用的都用了。

为了产生高清大图,训练了两个扩散上采样模型,一个从64到256,一个模型从256到1024,

prior

给定一个文本,去生成一个图片的特征。

diffusion prior 作者训练了一个transformer decoder,因为他的输入输出是embedding,所以说用u-net就不太合适,直接上transformer去处理这个序列就可以了。

这里的输入有:文本,clip文本特征,time embedding, 加噪的clip图片特征,transformer自己的embedding(cls token)

最终这个embedding特征呢就拿去预测没有加过噪声的clip图片特征。

这里他不去预测噪声,直接去预测噪声图

简而言之,在GLIDE的基础上,加了prior,用了层级式的生成,最终做出了DALL-E.2。

三,文生图模型的总体架构

在这里插入图片描述
举几个例子:1. stable diffusion 2. DALL-E 系列 3. Imagen
用的trick都大不相同,总之就是大力出奇迹

模型模型流程示意图
Stable Diffusion
在这里插入图片描述
DALL-E 系列
在这里插入图片描述
Imagen在这里插入图片描述

Text Encoder

Text Encoder: 把文本特征 ——> 图片特征。

所以训练的数据需要大量的 图像-文本对

Imagen的实验说,Text Encoder 的模型越大,整个生成模型生成的图片越好。

相对而言,增大DIFFUSION MODEL 对 提升图片生成的效果有限

注:FID越小越好,他评估真实图片与生成图片的距离。 FID-10K的意思就是,他sample了10k数量的图片,来计算FID。

CLIP Score,越大越好, 说明生成的图片与文本联系度很高

在这里插入图片描述

Decoder

Decoder的作用:Image embedding → 还原成图片

  • Imagen这个模型的 Image embedding 是小图

在这里插入图片描述

  • stable diffusion, DALL-E 的Image embedding是一个 隐性的特征
    在这里插入图片描述
  • 18
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
VAE(Variational Autoencoder)和Diffusion Model是两种不同的生成模型VAE是一种基于深度学习的生成模型,它通过神经网络学习数据的分布,并可以生成新的样本。VAE的基本思想是通过编码器将输入样本映射到潜在空间中的低维表示,然后通过解码器将低维表示映射回原始样本空间。VAE使用了变分推断来优化模型参数,通过最大化对数似然来学习样本的潜在分布。 Diffusion Model是一种基于概率模型生成模型,它通过模拟粒子的弥散过程来生成样本。该模型假设在每个时刻,每个样本点会从周围的样本中随机选择一个作为其更新值,通过多次迭代,样本会逐渐从初始状态向整个样本空间弥散。Diffusion Model可以通过数学公式来描述样本的演化过程,其中包括扩散方程和噪声项。 两者的区别主要体现在生成样本的方式和模型结构上。VAE是通过神经网络编码和解码实现生成样本的过程,而Diffusion Model则是通过模拟样本的演化过程来生成样本。另外,VAE使用了变分推断和最大似然估计来优化模型参数,而Diffusion Model则通过解扩散方程和噪声项来描述样本的演化过程。 总的来说,VAEDiffusion Model是两种不同的生成模型,分别利用深度学习和概率模型的方法来生成样本。它们在生成样本的方式和模型结构上有所不同,适用于不同的应用场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值