🐧大模型系列篇章
💖 多模态大模型 🔎 GroundingDINO 论文总结
💖 端到端目标检测 🔎 从DETR 到 GroundingDINO 🔥
💖 多模态大模型 👉 CLIP论文总结
💖 多模态大模型 👉 EVA-CLIP
💚 生成模型 👉 从 VAE 到 Diffusion Model (上)
💚 生成模型 👉 从 VAE 到 Diffusion Model (下)🔥
💧 天气大模型
🐧深度学习基础知识篇
💖 深度学习基础知识干货 🔎 Batch Normalization 批量归一化
💖 深度学习基础知识干货 🔎 卷积模型的Memory, Params, Flop是如何计算的?
💖 深度学习基础知识干货 🔎 Cross-Entropy Loss 多分类损失函数
💖 深度学习基础知识干货 🔎 Videos 动作检测
💖 深度学习基础知识干货 🔎 目标检测(Object Detection): 你需要知道的一些概念
💖 深度学习基础知识干货 🔎 微调(fine-tuning)和泛化(generalization)
💖 深度学习基础知识干货 🔎 Group Convolution / Depthwise Convolution 轻量模型的必有的卷积
💖 深度学习基础知识干货 🔎 Gradient checkpointing
💖 深度学习基础知识干货 🔎 Softmax中温度(temperature)参数
💖 深度学习基础知识干货 🔎 什么是few-shot learning
欢迎订阅专栏,第一时间掌握最新科技 大模型系列篇章 专栏链接 深度学习基础知识 专栏链接 |
1. 网络输出output:score
2. Cross-Entropy Loss(多分类损失函数)
- 先用softmax function把score 变成 probabilities。
- 再用交叉熵损失函数来进行Loss的计算