大家好,我是带我去滑雪!
(博主建议电脑查看,手机查看会出现公式不显示情况)
本文将介绍如何构造归零神经网络(ZNN),以时变矩阵求逆为例:
需要解决的问题:假设有已知可逆时变矩阵方阵S(t),需求。
第一步:首先需要把上述问题转化为准确解时刻存在且唯一的矩阵方程:S(t)X(t)=I
其中,S(t)为已知可逆时变方阵,X(t)为问题需求的未知解,I为单位矩阵,t为时间。
第二步:定义M(t)为时变复值差错矩阵,M(t)=S(t)X(t)-I
第三步:引入传统ZNN动力式:
其中,
是M(t)关于时间参数t的导数,
的大小与M(t)相同且它的每一个元素都是实现标量映射的激活函数
。ZNN要求激活函数
是单调递增的奇函数以确保模型收敛稳定。M(t)中的单个元素
的神经动力式为
,这些元素全部沿着负梯度变化,是ZNN收敛重要依据。
第四步:将M(t)=S(t)X(t)-I带入
,即可得到求解时变矩阵求逆的(归零神经网络)ZNN模型,如下:
参考文献:[1]胡泽善. 面向时变矩阵问题求解的ZNN鲁棒性研究及其应用[D].湖南大学,2021.
更多优质内容持续发布中,请移步主页查看。
若有问题可邮箱联系:1736732074@qq.com
博主的WeChat:TCB1736732074
点赞+关注,下次不迷路!