以时变矩阵求逆为例构造(归零神经网络)ZNN

      大家好,我是带我去滑雪!

      (博主建议电脑查看,手机查看会出现公式不显示情况)

     本文将介绍如何构造归零神经网络(ZNN),以时变矩阵求逆为例:

     需要解决的问题:假设有已知可逆时变矩阵方阵S(t),需求eq?S%5E%7B-1%7D%28t%29

第一步:首先需要把上述问题转化为准确解时刻存在且唯一的矩阵方程:S(t)X(t)=I

其中,S(t)为已知可逆时变方阵,X(t)为问题需求的未知解,I为单位矩阵,t为时间。

第二步:定义M(t)为时变复值差错矩阵,M(t)=S(t)X(t)-I

第三步:引入传统ZNN动力式:eq?%5Cdot%7BM%28t%29%7D%3D-F%28M%28t%29%29

其中,eq?%5Cdot%7BM%28t%29%7D是M(t)关于时间参数t的导数,eq?F%28%5Ccdot%20%29的大小与M(t)相同且它的每一个元素都是实现标量映射的激活函数eq?f%28%5Ccdot%20%29。ZNN要求激活函数eq?f%28%5Ccdot%20%29是单调递增的奇函数以确保模型收敛稳定。M(t)中的单个元素eq?M_%7Bij%7D的神经动力式为eq?%5Cdot%7BM_%7B_%7Bij%7D%7D%28t%29%7D%3D-f%28M_%7B_%7Bij%7D%7D%28t%29%29,这些元素全部沿着负梯度变化,是ZNN收敛重要依据。

第四步:将M(t)=S(t)X(t)-I带入eq?%5Cdot%7BM%28t%29%7D%3D-F%28M%28t%29%29,即可得到求解时变矩阵求逆的(归零神经网络)ZNN模型,如下:

                   eq?S%28t%29%5Cdot%7B%28X%28t%29%7D%3D-X%28t%29%5Cdot%7B%28S%28t%29%7D-F%28S%28t%29X%28t%29-I%29

参考文献:[1]胡泽善. 面向时变矩阵问题求解的ZNN鲁棒性研究及其应用[D].湖南大学,2021.


更多优质内容持续发布中,请移步主页查看。

若有问题可邮箱联系:1736732074@qq.com 

博主的WeChat:TCB1736732074

   点赞+关注,下次不迷路!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带我去滑雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值