Pytorch系列笔记(三)

我们主要来分析一下梯度下降法。以上文的根据学习时间来预测学习成绩的模型为例,上文中我们提到在𝜔=2时可以取得最优的解,如下图所示:
在这里插入图片描述
但是如果我们遇到更加复杂的问题,仅仅通过我们上述的分析,也可以直接得到𝜔的最优解嘛?显然是不可以的。那么我们就要避免𝜔陷入局部最优解。
在这里插入图片描述于是我们可以通过求𝜔在不同位置的梯度来使得我们向着最优值的方向前进。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们可以通过不断地迭代上述的过程来得到我们的最优解。具体数学部分如下:
在这里插入图片描述下面我们可以分析相关的代码:

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_pred = forward(x)
cost += (y_pred - y) ** 2
return cost / len(xs)
def gradient(xs, ys):
grad = 0
for x, y in zip(xs, ys):
grad += 2 * x * (x * w - y)
return grad / len(xs)
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w -= 0.01 * grad_val
print('Epoch:', epoch, 'w=', w, 'loss=', cost_val)
print('Predict (after training)', 4, forward(4))

跟上文的代码相比不同之处就在于运用的梯度下降的基本思想。

在这里插入图片描述
以下是结果展示:
在这里插入图片描述
在这里插入图片描述
我们还可以用SGD方法来进行进一步的优化,减少了相关的一部分的计算。
在这里插入图片描述
代码如下:

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
def gradient(x, y):
return 2 * x * (x * w - y)
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
for x, y in zip(x_data, y_data):
grad = gradient(x, y)
w = w - 0.01 * grad
print("\tgrad: ", x, y, grad)
l = loss(x, y)
print("progress:", epoch, "w=", w, "loss=", l)
print('Predict (after training)', 4, forward(4))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值