基于卷积神经网络(CNN)的深度迁移学习在声发射(AE)监测螺栓连接状况的应用

     螺栓结构在工业中用于组装部件,它们在多种机械系统中扮演着关键角色。确保这些连接结构的健康状态对于航空航天、汽车和建筑等各个行业至关重要,因为螺栓连接的故障可能导致重大的安全风险、经济损失、性能下降和监管合规问题。

     在早期阶段检测到螺栓松动或退化可以及时进行维护或修理,从而最小化昂贵的停机风险。因此,这有助于优化维护计划并有助于延长设备和结构的使用寿命。在役使用期间,有效的结构完整性监测系统的实施是强制性的,因为螺栓可能会自行松动,导致潜在的灾难性故障。

     螺栓自行松动的一个原因是由于振动周期中接触表面之间的粘滑引起的微观损伤的连续累积。这种损伤形式逃避了旨在评估螺栓结构整体和全局行为的主动技术的检测。然而,这种微观损伤本身会耗散能量,这可以通过一种名为声发射(AE)的被动技术来记录。AE定义为检测由材料完整性的突然和永久性变化产生的瞬态弹性波引起的材料表面亚纳米级位移。这些波的短暂性质要求使用压电传感器连续收集数据,典型的频率范围在几十kHz到1MHz之间,将位移转换为电压信号。

    不管应用如何,使用AE的一个重大挑战是提取具有代表性的和鲁棒的特征,这对于状态监测至关重要。因此,本文旨在解决以下问题:哪些特征对于紧固程度分类最相关?这些特征如何通过几次测量活动泛化?

1 ORION-AE 数据集

专门用于螺栓连接结构健康监测(SHM)的声发射(AE)数据集。它由法国 Besançon 的 Institut FEMTO-ST 的研究人员收集和创建,旨在评估和比较不同螺栓紧固

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值