【VQ-VAE-2论文精读】Generating Diverse High-Fidelity Images with VQ-VAE-2

本文介绍了VQ-VAE-2模型,它通过多层结构和自注意力改进生成高分辨率图像。VQ-VAE-2解决了模式崩溃和多样性问题,同时提供与GAN竞争的质量,且在编码和解码速度上有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、前言

论文地址:https://arxiv.org/abs/1906.00446
发表于2019年的NeurIPS。VQVAE的重要性就不谈了,学习latent diffusion model必须得了解这个。
NIPS(NeurIPS),全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。NIPS是机器学习领域的顶级会议 。在中国计算机学会的国际学术会议排名中,NIPS为人工智能领域的A类会议。
来看看VQ-VAE-2相对于之前的版本有何异同之处吧。

总的来看这篇文章的新颖之处在于:

  1. 多层的VQVAE,顶部的层负责全局信息,底部的层负责局部细节。
  2. 架构的改进,例如self-attention的加入以及更好的稳定化方法、扩展tpu模型和在样品多样性和样品质量之间进行权衡的机制。
  3. 可以生成高分辨率的图像。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值