【VQ-VAE-2论文精读】Generating Diverse High-Fidelity Images with VQ-VAE-2
0、前言
论文地址:https://arxiv.org/abs/1906.00446
发表于2019年的NeurIPS。VQVAE的重要性就不谈了,学习latent diffusion model必须得了解这个。
NIPS(NeurIPS),全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。NIPS是机器学习领域的顶级会议 。在中国计算机学会的国际学术会议排名中,NIPS为人工智能领域的A类会议。
来看看VQ-VAE-2相对于之前的版本有何异同之处吧。
总的来看这篇文章的新颖之处在于:
- 多层的VQVAE,顶部的层负责全局信息,底部的层负责局部细节。
- 架构的改进,例如self-attention的加入以及更好的稳定化方法、扩展tpu模型和在样品多样性和样品质量之间进行权衡的机制。
- 可以生成高分辨率的图像。