【VQGAN论文精读】Taming Transformers for High-Resolution Image Synthesis

本文深入解析VQGAN论文,探讨如何利用CNN学习图像codebook并用Transformer进行高分辨率图像建模。通过结合CNN的局部特性与Transformer的全局建模能力,VQGAN能在保持高感知质量的同时增加压缩率,实现高分辨率图像生成。文章涵盖方法介绍、相关工作、实验结果及未来方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、前言

论文地址:Taming Transformers for High-Resolution Image Synthesis
这篇博客首先分析VQGAN的论文方法,下期分享VQGAN的代码原理。
VQGAN是StableDiffusion作者的前期论文,希望大家对于表征学习、GAN以及Transformer自回归建模(GPT)的理解有一定的帮助。
分享的这篇文章综合了CNN的局部建模优势与Transformer的全局建模优势,并且基于VQVAE,具体如下:

  1. 首先是利用CNN(包括编码器和解码器)来学习一个有效的codebook来表示图片(VQVAE)。然而使用transformers将图像表示为潜在图像成分的分布,需要我们突破压缩的极限。这里就增加了基于patch的鉴别器和感知损失,提出了VQGAN,以在增加压缩率的情况下保持良好的感知质量keep good perceptual quality at increased compression rate.(自然也就用到了注意力机制,具体参考下文)
  2. 那么Transformer如何应用到图像生成呢?之前说道VQVAE其实就是找到对应codebook中的索引&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值