LeetCode-295. 数据流的中位数【设计 双指针 数据流 排序 堆(优先队列)】

LeetCode-295. 数据流的中位数【设计 双指针 数据流 排序 堆(优先队列)】

题目描述:

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

例如 arr = [2,3,4] 的中位数是 3 。
例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5 。
实现 MedianFinder 类:

MedianFinder() 初始化 MedianFinder 对象。

void addNum(int num) 将数据流中的整数 num 添加到数据结构中。

double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。

示例 1:

输入
[“MedianFinder”, “addNum”, “addNum”, “findMedian”, “addNum”, “findMedian”]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]

解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
提示:

-105 <= num <= 105
在调用 findMedian 之前,数据结构中至少有一个元素
最多 5 * 104 次调用 addNum 和 findMedian

解题思路一:堆

这题的难点是:插入一个数之后保持数组的有序是时间复杂度比较高的。
根据以上思路,可以将数据流保存在一个列表中,并在添加元素时 保持数组有序 。此方法的时间复杂度为 O(N),其中包括: 查找元素插入位置 O(logN) (二分查找)、向数组某位置插入元素 O(N) (插入位置之后的元素都需要向后移动一位)。
借助 堆 可进一步优化时间复杂度。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
Python 中 heapq 模块是小顶堆。实现 大顶堆 方法: 小顶堆的插入和弹出操作均将元素 取反 即可。

from heapq import *
class MedianFinder:

    def __init__(self):
        self.A = []
        self.B = []

    def addNum(self, num: int) -> None:
        if len(self.A) != len(self.B):
            heappush(self.A, num)
            heappush(self.B, -heappop(self.A))
        else:
            heappush(self.B, -num)
            heappush(self.A, -heappop(self.B))

    def findMedian(self) -> float:	# 因为B中的元素全是负数,所以这里是self.A[0] - self.B[0]
        return self.A[0] if len(self.A) != len(self.B) else (self.A[0] - self.B[0]) / 2.0



# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()

时间复杂度:O(logn)
空间复杂度:O(n)

解题思路二:优化

Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more efficiently than heappush() followed by a separate call to heappop().

根据以上文档,可将 Python 代码优化为:

from heapq import *

class MedianFinder:
    def __init__(self):
        self.A = [] # 小顶堆,保存较大的一半
        self.B = [] # 大顶堆,保存较小的一半

    def addNum(self, num: int) -> None:
        if len(self.A) != len(self.B):
            heappush(self.B, -heappushpop(self.A, num))
        else:
            heappush(self.A, -heappushpop(self.B, -num))

    def findMedian(self) -> float:
        return self.A[0] if len(self.A) != len(self.B) else (self.A[0] - self.B[0]) / 2.0

时间复杂度:O(logn)
空间复杂度:O(n)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值