yolov8 目标检测、分割、姿势估计、跟踪任务(Python代码)

yolov8 目标检测、分割、姿势估计、跟踪任务



前言

计算机视觉神器YOLOV8开源之后,成为了目标检测、图像分割、人体姿态估计、关键点检测等领域的新标杆。


一、目标检测任务实现

1.图片检测

代码如下(示例):

from ultralytics import YOLO
import cv2
# 加载预训练模型
model = YOLO("yolov8n.pt", task='detect')
# model = YOLO("yolov8n.pt") task参数也可以不填写,它会根据模型去识别相应任务类别
# 检测图片
results = model("./images/multi-person.jpeg")
res = results[0].plot()
cv2.imshow("YOLOv8 Inference", res)
cv2.waitKey(0)

在这里插入图片描述

2.检测视频

代码如下(示例):

import cv2
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
# 打开文件
video_path = "./videos/cxk.mp4"
cap = cv2.VideoCapture(video_path)
# 循环播放视频
while cap.isOpened():
    # 读取视频的每一帧
    success, frame = cap.read()

    if success:
        # 运行yolov8
        results = model(frame)
        # 可视化结果
        annotated_frame = results[0].plot()
        cv2.imshow("YOLOv8 Inference", annotated_frame)
        # 按住q键盘播放结束
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        #结束播放则循环结束
        break

# 释放捕捉和窗口
cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

二、分割任务

1.分割图片

代码如下(示例):

from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('yolov8n-seg.pt')
results = model('./images/multi-person.jpeg')
res = results[0].plot(boxes=False) #boxes=False表示不展示预测框,True表示同时展示预测框
cv2.imshow("YOLOv8 Inference", res,)
cv2.waitKey(0)

在这里插入图片描述

2.分割视频

代码如下(示例):

import cv2
from ultralytics import YOLO
model = YOLO('yolov8n-seg.pt', task='segment')
video_path = "./videos/mother_wx.mp4"
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
    success, frame = cap.read()
    if success:
        results = model(frame)
        annotated_frame = results[0].plot()
        cv2.imshow("YOLOv8 Inference", annotated_frame)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        break
cap.release()
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述


三、追踪任务

1.追踪视频

代码如下(示例):(和检测相比就多了个id)

from ultralytics import YOLO

model = YOLO('yolov8n.pt',task='detect')
results = model.track(source="./videos/mother_wx.mp4", show=True)

在这里插入图片描述


四、姿态检测任务

1.姿态检测图片

代码如下(示例):

from ultralytics import YOLO
import cv2
model = YOLO('yolov8n-pose.pt')
results = model('./images/multi-person.jpeg')
res = results[0].plot()
cv2.imshow("YOLOv8 Inference", res)
cv2.waitKey(0)

在这里插入图片描述

2.姿态检测视频

代码如下(示例):

import cv2
from ultralytics import YOLO


model = YOLO('yolov8n-pose.pt', task='pose')
video_path = "./videos/mother_wx.mp4"
cap = cv2.VideoCapture(video_path)


while cap.isOpened():

    success, frame = cap.read()

    if success:

        results = model(frame)

        annotated_frame = results[0].plot()

        cv2.imshow("YOLOv8 Inference", annotated_frame)

        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:

        break
cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述


五、具体代码见github仓库(记得科学上网)

点击此处跳转github

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@M_J_Y@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值