最优钢铁切割(算法导论第四版)

本文探讨了如何在钢铁切割问题中找到收益最大的切割方案,介绍了蛮力法、动态规划以及非递归迭代方法。通过动态规划算法,利用r数组存储长度为n的组合最大值,以求解给定钢条长度和价格表时的最大收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优钢铁切割



前言

一家公司购买长钢条,将其切割成短钢条出售,假设切割本身没有成本,长度为i的短钢条的价格为Pi。那给定一段长度为n的钢条和一个价格表Pi,求钢条的切割方案使得收益Rn最大。例如

长度12345678910
价格1589101717201430

一、蛮力法

代码如下

int m1(int n){
    if(n==0)
    return 0;
    int q=-1;
    // 截断为两半递归计算子问题
    for(int i=1;i<=n;i++){
        q=max(q,p[i]+m1(n-i));
    }
    return q;
}

二、动态规划

代码如下(示例):

int r[11];//采用r数组保存长度为n的组合最大值
int m(int n){
    if(r[n]>0){
        return r[n]; //大于0表示已经计算过且是最优解
    }
    int q=0;
    if(n==0)q==0;
    else{
        for(int i=1;i<=n;i++){
            q=max(q,p[i]+m(n-i));
        }
        
    }
    r[n]=q;//保存最大值
    return q;
}

三、重构不使用递归改为迭代后

代码如下

int m3(int n){
    for(int i=1;i<=n;i++){
        int q=-1;
        for(int j=1;j<=i;j++){
            q=max(q,r[i-j]+p[j]);
        }
        r[i]=q;
    }
    return r[n];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@M_J_Y@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值