过拟合是在模型训练过程中会时常出现的问题,往往表现为训练误差较小,而验证误差较大。数据集的复杂程度以及模型容量的过大都是导致过拟合的影响因素。
而为了控制模型容量让他不至于太大有两个方法:
1、减少参数个数。
2、限制参数范围。
权重衰退就是通过限制参数值的选择范围来控制容量模型。
使用均方范数作为硬性限制
首先说一下使用均方范数作为硬性限制
在求最小化损失 模型训练过程中,给权重w添加一个硬性限制要求 。这样模型中的所有参数都被硬性的控制在了一个范围之类。
并且通常对偏置项b不做限制,因为限不限制都差不多。
小的意味着更强的正则项。
使用均方范数作为柔性限制
在实际过程中,对参数做硬性限制操作难度较大,并且计算量较大,所以就有了做柔性限制。
于是在硬性限制的基础上,对每个,都可以找到使得之前的目标函数等价于 ,可以通过拉格朗日乘子法证明这样是添加了一个限制,这里不做证明。
通过了一个超参数控制了正则项的重要程度,当=0的时候正则项无作用,当趋向于无穷的时候,w趋向于0.
在使用柔性限制的时候参数更新的法则
首先肯定还是根据损失计算梯度:
然后对参数进行更新:
为学习率,然后跟正常模式下的多了一个,通常,所以在每次参数更新的时候都要把时刻的参数缩小一些,这样就能控制参数在更新的时候变得太大,在深度学习中就叫做权重衰退。