处理过拟合的方法之权重衰退

本文讨论了过拟合问题及其在模型训练中的影响,介绍了通过减少参数个数和使用均方范数进行硬性或柔性限制来控制模型容量的方法,特别强调了权重衰退在深度学习中的应用,包括使用拉格朗日乘子法和学习率调整以防止参数过大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    

    过拟合是在模型训练过程中会时常出现的问题,往往表现为训练误差较小,而验证误差较大。数据集的复杂程度以及模型容量的过大都是导致过拟合的影响因素。

        而为了控制模型容量让他不至于太大有两个方法:

        1、减少参数个数。

        2、限制参数范围。

权重衰退就是通过限制参数值的选择范围来控制容量模型。

使用均方范数作为硬性限制

首先说一下使用均方范数作为硬性限制

        在求最小化损失 min loss\left ( w, b\right )模型训练过程中,给权重w添加一个硬性限制要求 \left | w \right |^{2}\leq \theta  。这样模型中的所有参数都被硬性的控制在了一个范围之类。

        并且通常对偏置项b不做限制,因为限不限制都差不多。

        小的\theta意味着更强的正则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值