【树形动态规划】337. 打家劫舍 III——思路解释

本文介绍了如何使用树形动态规划解决打家劫舍III问题,即在不触动警报的情况下,小偷在二叉树结构的房屋中所能盗取的最高金额。通过设置递推函数f(o)和g(o),分别表示选择和不选择节点o时的最大收益,通过递归遍历二叉树,最终得到最大收益。算法思路清晰,适用于解决类似树状结构的最优化问题。
摘要由CSDN通过智能技术生成

【树形动态规划】337. 打家劫舍 III——思路解释

【题目】
打家劫舍 III
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。
除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:
在这里插入图片描述
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:
在这里插入图片描述
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9

提示:
树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104

【树形动态规划的思路】
对于树形动态规划,一般的解决思路如下:

  1. 设置两个递推函数—— f f f g g g,按照根节点的情况分情况讨论。
  2. 对于左子树的根结点 l l l和右子树的根节点 r r r,在不同根节点的情况下进行再次讨论分析

思路与算法

简化一下这个问题:一棵二叉树,树上的每个点都有对应的权值,每个点有两种状态(选中和不选中),问在不能同时选中有父子关系的点的情况下,能选中的点的最大权值和是多少。

我们可以用 f ( o ) f(o) f(o) 表示选择 o 节点的情况下,o 节点的子树上被选择的节点的最大权值和; g ( o ) g(o) g(o) 表示不选择 o 节点的情况下,o 节点的子树上被选择的节点的最大权值和;l 和 r 代表 o 的左右孩子。

当 o 被选中时,o 的左右孩子都不能被选中,故 o 被选中情况下子树上被选中点的最大权值和为 l 和 r不被选中的最大权值和相加,即 f ( o ) = g ( l ) + g ( r ) f(o) = g(l) + g(r) f(o)=g(l)+g(r)
当 o 不被选中时,o 的左右孩子可以被选中,也可以不被选中。对于 o 的某个具体的孩子 x,它对 o 的贡献是 x 被选中和不被选中情况下权值和的较大值。故 g ( o ) = max ⁡ { f ( l ) , g ( l ) } + max ⁡ { f ( r ) , g ( r ) } g(o) = \max \{ f(l) , g(l)\}+\max\{ f(r) , g(r) \} g(o)=max{f(l),g(l)}+max{f(r),g(r)}

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<TreeNode*,int> f,g;
    void dfs(TreeNode* root){
        if(!root)return;
        dfs(root->left);
        dfs(root->right);
        f[root] =root->val + g[root->left] + g[root->right];
        g[root] = max(f[root->left],g[root->left]) + max(f[root->right],g[root->right]);
        return;
    }
    int rob(TreeNode* root) {
        dfs(root);
        return max(f[root],g[root]);

    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yozu_Roo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值