【树形动态规划】337. 打家劫舍 III——思路解释
【题目】
打家劫舍 III
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。
除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例 1:
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
提示:
树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104
【树形动态规划的思路】
对于树形动态规划,一般的解决思路如下:
- 设置两个递推函数—— f f f、 g g g,按照根节点的情况分情况讨论。
- 对于左子树的根结点 l l l和右子树的根节点 r r r,在不同根节点的情况下进行再次讨论分析
思路与算法
简化一下这个问题:一棵二叉树,树上的每个点都有对应的权值,每个点有两种状态(选中和不选中),问在不能同时选中有父子关系的点的情况下,能选中的点的最大权值和是多少。
我们可以用 f ( o ) f(o) f(o) 表示选择 o 节点的情况下,o 节点的子树上被选择的节点的最大权值和; g ( o ) g(o) g(o) 表示不选择 o 节点的情况下,o 节点的子树上被选择的节点的最大权值和;l 和 r 代表 o 的左右孩子。
当 o 被选中时,o 的左右孩子都不能被选中,故 o 被选中情况下子树上被选中点的最大权值和为 l 和 r不被选中的最大权值和相加,即
f
(
o
)
=
g
(
l
)
+
g
(
r
)
f(o) = g(l) + g(r)
f(o)=g(l)+g(r)。
当 o 不被选中时,o 的左右孩子可以被选中,也可以不被选中。对于 o 的某个具体的孩子 x,它对 o 的贡献是 x 被选中和不被选中情况下权值和的较大值。故
g
(
o
)
=
max
{
f
(
l
)
,
g
(
l
)
}
+
max
{
f
(
r
)
,
g
(
r
)
}
g(o) = \max \{ f(l) , g(l)\}+\max\{ f(r) , g(r) \}
g(o)=max{f(l),g(l)}+max{f(r),g(r)}。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
unordered_map<TreeNode*,int> f,g;
void dfs(TreeNode* root){
if(!root)return;
dfs(root->left);
dfs(root->right);
f[root] =root->val + g[root->left] + g[root->right];
g[root] = max(f[root->left],g[root->left]) + max(f[root->right],g[root->right]);
return;
}
int rob(TreeNode* root) {
dfs(root);
return max(f[root],g[root]);
}
};