开源数学大模型
MathGLM :
论文链接:https://arxiv.org/abs/2309.03241
Github链接:https://github.com/THUDM/MathGLM
模型下载:MathGLM
LIEMMA:
论文链接-http://arxiv.org/abs/2310.10631.pdf
代码链接-https://github.com/EleutherAI/math-lm
对应的数据集:EleutherAI/proof-pile-2 · Datasets at Hugging Face
mathPile:
论文地址:https://huggingface.co/papers/2312.17120
项目地址:Generative AI for Math: Part I MATHPILE: A Billion-Token-Scale Pretraining Corpus for Math
代码地址:https://github.com/GAIR-NLP/MathPile
数据集:
MAmmoTH:
论文链接:https://arxiv.org/pdf/2309.05653.pdf
项目链接:MAmmoTH
数据集:TIGER-Lab/MathInstruct · Datasets at Hugging Face
MathCoder:
他们开发了一个叫做MathCoder的大模型,数学能力直接在竞赛级“题库”Math上超过GPT-4。
做到这一点靠的就是无缝集成代码的能力——在遇到数学问题时,它不仅能用自然语言推理,还能自动编写和执行代码来建模、推导公式与方程。
在实际评测中,MathCoder除了超过GPT-4,还顺利在MATH和GSM8K两大数据集上取得了开源LLM中的SOTA
他们首先提出了一个可以生成高质量数学题的数据集:MathCodeInstruct。
MathCodeInstruct。
该数据集由两部分组成:
种子数据(D0):主要基于GSM8K和MATH,并利用GPT-4收集答案。
插值数据(D1):让GPT-4基于他们提出的一种叫做“问题插值提示”的方法生成。
如下图所示:
示例1和2分别来自于GSM8K和MATH,1简单,2难一些,GPT-4要做的“插值”就是生成比1难但比2更简单的新问题。
基于以上两类问题,最终MathCodeInstruct数据集一共收集了8万道数学题。
论文地址: https://arxiv.org/abs/2310.03731
WizardMath
项目主页: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath
论文地址: https://arxiv.org/abs/2304.12244(WizardLM) https://arxiv.org/abs/2306.08568(WizardCoder)
相关开源数据集
Ape210K 数据集:
论文链接:[2009.11506] Ape210K: A Large-Scale and Template-Rich Dataset of Math Word Problems (arxiv.org)
Github链接:GitHub - Chenny0808/ape210k: This is the repository of the Ape210K dataset and baseline models.
小学数学(例如 GSM8K、TAL-SCQ5K-EN 和 MMLU-Math),高中数学(如 MATH、SAT-Math、MMLU-Math、AQuA 和 MathQA),以及大学数学(例如 MMLU-Math)GSM8K、math、AQuA、Camel和TheoremQA.
领域内数据集包括GSM8K,MATH,AQuA-RAT,NumGLUE;领域外数据集包括SVAMP,Mathematics,SimulEq,SAT-Math和SimulEq,涵盖了小学、高中和大学水平的数学问题,部分数据集甚至包括形式逻辑和常识推理。
其他相关论文:
Minif2f: a cross-system benchmark for formal olympiad-level mathematics.
Naturalprover: Grounded mathematical proof generation with language models
Solving quantitative reasoning problems with language models.
Proofnet: Autoformalizing and formally proving undergraduate-level mathematics