网络流量大语言模型
网络流量大语言模型TrafficLLM
模型特点
- 该机制通过在大规模流量域语料库上训练专门化的标记化模型,有效地扩展了LLM的本机标记器。
- 双阶段调优管道: 做的是Text部分Text训练 然后流量部分流量训练
- 参数有效微调(EA-PEFT)可扩展自适应: 该技术将模型功能拆分为不同的PEFT模型,这有助于将交通模式变化引起的动态场景成本降至最低。
模型运行环境
租用Autodl服务器进行模型测试、模型微调环境配置等工作。
镜像: PyTorch 2.3.0 Python 3.12 Cuda 12.1
GPU: RTX3090
环境配置
conda环境配置
// conda环境配置
conda activate base
conda create -n py38 python=3.8
conda activate trafficllm //之后运行模型都要先进入trafficllm环境里面
requirements.txt文件依赖配置
pip install -r requirements.txt
基座模型下载并存储
pip install modelscope
modelscope d