工程复现——TrafficLLM

网络流量大语言模型TrafficLLM

TrafficLLM项目地址

模型特点

在这里插入图片描述

  • 该机制通过在大规模流量域语料库上训练专门化的标记化模型,有效地扩展了LLM的本机标记器。
  • 双阶段调优管道: 做的是Text部分Text训练 然后流量部分流量训练
  • 参数有效微调(EA-PEFT)可扩展自适应: 该技术将模型功能拆分为不同的PEFT模型,这有助于将交通模式变化引起的动态场景成本降至最低。

模型运行环境

在这里插入图片描述
租用Autodl服务器进行模型测试、模型微调环境配置等工作。
镜像: PyTorch 2.3.0 Python 3.12 Cuda 12.1
GPU: RTX3090
在这里插入图片描述

环境配置

conda环境配置

// conda环境配置
conda activate base
conda create -n py38 python=3.8
conda activate trafficllm //之后运行模型都要先进入trafficllm环境里面

在这里插入图片描述

requirements.txt文件依赖配置

pip install -r requirements.txt

在这里插入图片描述

基座模型下载并存储

pip install modelscope
modelscope d
### 如何复现 RT-DETR 模型 #### 准备工作 为了成功复现 RT-DETR 模型,需先安装必要的依赖库并准备数据集。确保 Python 和 PyTorch 已经正确配置好环境。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 接着按照项目文档说明下载 COCO 数据集或其他适用的数据集[^1]。 #### 配置实验环境 创建一个新的虚拟环境来隔离项目的依赖关系: ```bash conda create -n rt-detr python=3.8 conda activate rt-detr ``` 随后克隆官方仓库或对应的实现代码库,并进入该目录下执行安装命令: ```bash git clone https://github.com/some/repo.git cd repo pip install -r requirements.txt ``` #### 调整参数设置 根据具体需求调整超参数设定,比如批量大小(batch size),学习率(learning rate)等。这些参数通常位于配置文件中,如 `config.yaml` 或者通过命令行传递给训练脚本。 对于 RT-DETR 的特定调优建议可以参考相关文献中的最佳实践部分。 #### 开始训练过程 启动训练之前确认所有的路径都已正确定义,特别是指向预处理后的图像以及标注信息的位置。运行如下指令开始训练流程: ```bash python train.py --data_path /path/to/dataset --output_dir ./outputs/ ``` 此过程中应当监控 GPU 使用情况以及其他性能指标以确保一切正常运作。 #### 测试与评估 完成一轮完整的迭代之后,利用测试集合验证模型的表现。这一步骤同样可以通过相应的 Python 脚本来完成: ```bash python eval.py --model_weights outputs/checkpoint.pth --eval_data test_set.json ``` 上述操作能够帮助理解当前版本下的检测精度和其他重要统计量。 #### 结果分析 最后收集所有得到的结果并与原始论文对比差异所在之处。如果发现某些方面存在差距,则可能需要进一步优化网络结构或是探索其他潜在因素的影响。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值